傅里叶变换
dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT)
傅里叶逆变换
img_back = cv.idft(f_ishift)
实验:将图像转换到频率域,低通滤波,将频率域转回到时域,显示图像
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
import numpy as np import cv2 as cv from matplotlib import pyplot as plt img = cv.imread( 'd:/paojie_g.jpg' , 0 ) rows, cols = img.shape crow, ccol = rows / / 2 , cols / / 2 dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft) # create a mask first, center square is 1, remaining all zeros mask = np.zeros((rows,cols, 2 ),np.uint8) mask[crow - 30 :crow + 31 , ccol - 30 :ccol + 31 , :] = 1 # apply mask and inverse DFT fshift = dft_shift * mask f_ishift = np.fft.ifftshift(fshift) img_back = cv.idft(f_ishift) img_back = cv.magnitude(img_back[:,:, 0 ],img_back[:,:, 1 ]) plt.subplot( 121 ),plt.imshow(img, cmap = 'gray' ) plt.title( 'Input Image' ), plt.xticks([]), plt.yticks([]) plt.subplot( 122 ),plt.imshow(img_back, cmap = 'gray' ) plt.title( 'Low Pass Filter' ), plt.xticks([]), plt.yticks([]) plt.show() |
原文链接:https://www.cnblogs.com/wojianxin/p/12684306.html