最近在工作中遇到一个需求,就是要开一个接口来接收供应商推送的数据。项目采用的python的django框架,我是想也没想,就直接一梭哈,写出了如下代码:
1
2
3
4
5
6
7
8
9
|
class XXDataPushView(APIView): """ 接收xx数据推送 """ # ... @white_list_required def post( self , request, * * kwargs): req_data = request.data or {} # ... |
但随后,发现每日数据并没有任何变化,质问供应商是否没有做推送,在忽悠我们。然后对方给的答复是,他们推送的是gzip
压缩的数据流,接收端需要主动进行解压。此前从没有处理过这种压缩的数据,对方具体如何做的推送对我来说也是一个黑盒。
因此,我要求对方给一个推送的简单示例,没想到对方不讲武德,仍过来一段没法单独运行的java代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
private byte [] compress(JSONObject body) { try { ByteArrayOutputStream out = new ByteArrayOutputStream(); GZIPOutputStream gzip = new GZIPOutputStream(out); gzip.write(body.toString().getBytes()); gzip.close(); return out.toByteArray(); } catch (Exception e) { logger.error( "Compress data failed with error: " + e.getMessage()).commit(); } return JSON.toJSONString(body).getBytes(); } public void post(JSONObject body, String url, FutureCallback<HttpResponse> callback) { RequestBuilder requestBuilder = RequestBuilder.post(url); requestBuilder.addHeader( "Content-Type" , "application/json; charset=UTF-8" ); requestBuilder.addHeader( "Content-Encoding" , "gzip" ); byte [] compressData = compress(body); int timeout = ( int ) Math.max((( float )compressData.length) / 5000000 , 5000 ); RequestConfig.Builder requestConfigBuilder = RequestConfig.custom(); requestConfigBuilder.setSocketTimeout(timeout).setConnectTimeout(timeout); requestBuilder.setEntity( new ByteArrayEntity(compressData)); requestBuilder.setConfig(requestConfigBuilder.build()); excuteRequest(requestBuilder, callback); } private void excuteRequest(RequestBuilder requestBuilder, FutureCallback<HttpResponse> callback) { HttpUriRequest request = requestBuilder.build(); httpClient.execute(request, new FutureCallback<HttpResponse>() { @Override public void completed(HttpResponse httpResponse) { try { int responseCode = httpResponse.getStatusLine().getStatusCode(); if (callback != null ) { if (responseCode == 200 ) { callback.completed(httpResponse); } else { callback.failed( new Exception( "Status code is not 200" )); } } } catch (Exception e) { logger.error( "Get error on " + requestBuilder.getMethod() + " " + requestBuilder.getUri() + ": " + e.getMessage()).commit(); if (callback != null ) { callback.failed(e); } } EntityUtils.consumeQuietly(httpResponse.getEntity()); } @Override public void failed(Exception e) { logger.error( "Get error on " + requestBuilder.getMethod() + " " + requestBuilder.getUri() + ": " + e.getMessage()).commit(); if (callback != null ) { callback.failed(e); } } @Override public void cancelled() { logger.error( "Request cancelled on " + requestBuilder.getMethod() + " " + requestBuilder.getUri()).commit(); if (callback != null ) { callback.cancelled(); } } }); } |
从上述代码可以看出,对方将json
数据压缩为了gzip
数据流stream
。于是搜索django
的文档,只有这段关于gzip
处理的装饰器描述:
django.views.decorators.gzip
里的装饰器控制基于每个视图的内容压缩。
- gzip_page()
如果浏览器允许 gzip 压缩,那么这个装饰器将压缩内容。它相应的设置了 Vary 头部,这样缓存将基于 Accept-Encoding 头进行存储。
但是,这个装饰器只是压缩请求响应至浏览器的内容,我们目前的需求是解压缩接收的数据。这不是我们想要的。
幸运的是,在flask
中有一个扩展叫flask-inflate
,安装了此扩展会自动对请求来的数据做解压操作。查看该扩展的具体代码处理:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
# flask_inflate.py import gzip from flask import request GZIP_CONTENT_ENCODING = 'gzip' class Inflate( object ): def __init__( self , app = None ): if app is not None : self .init_app(app) @staticmethod def init_app(app): app.before_request(_inflate_gzipped_content) def inflate(func): """ A decorator to inflate content of a single view function """ def wrapper( * args, * * kwargs): _inflate_gzipped_content() return func( * args, * * kwargs) return wrapper def _inflate_gzipped_content(): content_encoding = getattr (request, 'content_encoding' , None ) if content_encoding ! = GZIP_CONTENT_ENCODING: return # We don't want to read the whole stream at this point. # Setting request.environ['wsgi.input'] to the gzipped stream is also not an option because # when the request is not chunked, flask's get_data will return a limited stream containing the gzip stream # and will limit the gzip stream to the compressed length. This is not good, as we want to read the # uncompressed stream, which is obviously longer. request.stream = gzip.GzipFile(fileobj = request.stream) |
上述代码的核心是:
1
|
request.stream = gzip.GzipFile(fileobj = request.stream) |
于是,在django
中可以如下处理:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
class XXDataPushView(APIView): """ 接收xx数据推送 """ # ... @white_list_required def post( self , request, * * kwargs): content_encoding = request.META.get( "HTTP_CONTENT_ENCODING" , "") if content_encoding ! = "gzip" : req_data = request.data or {} else : gzip_f = gzip.GzipFile(fileobj = request.stream) data = gzip_f.read().decode(encoding = "utf-8" ) req_data = json.loads(data) # ... handle req_data |
ok, 问题完美解决。还可以用如下方式测试请求:
1
2
3
4
5
6
7
8
9
10
11
12
|
import gzip import requests import json data = {} data = json.dumps(data).encode( "utf-8" ) data = gzip.compress(data) resp = requests.post( "http://localhost:8760/push_data/" ,data = data,headers = { "Content-Encoding" : "gzip" , "Content-Type" : "application/json;charset=utf-8" }) print (resp.json()) |
以上就是如何用Django处理gzip数据流的详细内容,更多关于Django处理gzip数据流的资料请关注服务器之家其它相关文章!
原文链接:https://juejin.cn/post/6923061528555945992