python+opencv车道线检测(简易实现),供大家参考,具体内容如下
技术栈:python+opencv
实现思路:
1、canny边缘检测获取图中的边缘信息;
2、霍夫变换寻找图中直线;
3、绘制梯形感兴趣区域获得车前范围;
4、得到并绘制车道线;
效果展示:
代码实现:
- import cv2
- import numpy as np
- def canny():
- gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY)
- #高斯滤波
- blur = cv2.GaussianBlur(gray, (5, 5), 0)
- #边缘检测
- canny_img = cv2.Canny(blur, 50, 150)
- return canny_img
- def region_of_interest(r_image):
- h = r_image.shape[0]
- w = r_image.shape[1]
- # 这个区域不稳定,需要根据图片更换
- poly = np.array([
- [(100, h), (500, h), (290, 180), (250, 180)]
- ])
- mask = np.zeros_like(r_image)
- # 绘制掩膜图像
- cv2.fillPoly(mask, poly, 255)
- # 获得ROI区域
- masked_image = cv2.bitwise_and(r_image, mask)
- return masked_image
- if __name__ == '__main__':
- image = cv2.imread('test.jpg')
- lane_image = np.copy(image)
- canny = canny()
- cropped_image = region_of_interest(canny)
- cv2.imshow("result", cropped_image)
- cv2.waitKey(0)
霍夫变换加线性拟合改良:
效果图:
代码实现:
主要增加了根据斜率作线性拟合过滤无用点后连线的操作;
- import cv2
- import numpy as np
- def canny():
- gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY)
- blur = cv2.GaussianBlur(gray, (5, 5), 0)
- canny_img = cv2.Canny(blur, 50, 150)
- return canny_img
- def region_of_interest(r_image):
- h = r_image.shape[0]
- w = r_image.shape[1]
- poly = np.array([
- [(100, h), (500, h), (280, 180), (250, 180)]
- ])
- mask = np.zeros_like(r_image)
- cv2.fillPoly(mask, poly, 255)
- masked_image = cv2.bitwise_and(r_image, mask)
- return masked_image
- def get_lines(img_lines):
- if img_lines is not None:
- for line in lines:
- for x1, y1, x2, y2 in line:
- # 分左右车道
- k = (y2 - y1) / (x2 - x1)
- if k < 0:
- lefts.append(line)
- else:
- rights.append(line)
- def choose_lines(after_lines, slo_th): # 过滤斜率差别较大的点
- slope = [(y2 - y1) / (x2 - x1) for line in after_lines for x1, x2, y1, y2 in line] # 获得斜率数组
- while len(after_lines) > 0:
- mean = np.mean(slope) # 计算平均斜率
- diff = [abs(s - mean) for s in slope] # 每条线斜率与平均斜率的差距
- idx = np.argmax(diff) # 找到最大斜率的索引
- if diff[idx] > slo_th: # 大于预设的阈值选取
- slope.pop(idx)
- after_lines.pop(idx)
- else:
- break
- return after_lines
- def clac_edgepoints(points, y_min, y_max):
- x = [p[0] for p in points]
- y = [p[1] for p in points]
- k = np.polyfit(y, x, 1) # 曲线拟合的函数,找到xy的拟合关系斜率
- func = np.poly1d(k) # 斜率代入可以得到一个y=kx的函数
- x_min = int(func(y_min)) # y_min = 325其实是近似找了一个
- x_max = int(func(y_max))
- return [(x_min, y_min), (x_max, y_max)]
- if __name__ == '__main__':
- image = cv2.imread('F:\\A_javaPro\\test.jpg')
- lane_image = np.copy(image)
- canny_img = canny()
- cropped_image = region_of_interest(canny_img)
- lefts = []
- rights = []
- lines = cv2.HoughLinesP(cropped_image, 1, np.pi / 180, 15, np.array([]), minLineLength=40, maxLineGap=20)
- get_lines(lines) # 分别得到左右车道线的图片
- good_leftlines = choose_lines(lefts, 0.1) # 处理后的点
- good_rightlines = choose_lines(rights, 0.1)
- leftpoints = [(x1, y1) for left in good_leftlines for x1, y1, x2, y2 in left]
- leftpoints = leftpoints + [(x2, y2) for left in good_leftlines for x1, y1, x2, y2 in left]
- rightpoints = [(x1, y1) for right in good_rightlines for x1, y1, x2, y2 in right]
- rightpoints = rightpoints + [(x2, y2) for right in good_rightlines for x1, y1, x2, y2 in right]
- lefttop = clac_edgepoints(leftpoints, 180, image.shape[0]) # 要画左右车道线的端点
- righttop = clac_edgepoints(rightpoints, 180, image.shape[0])
- src = np.zeros_like(image)
- cv2.line(src, lefttop[0], lefttop[1], (255, 255, 0), 7)
- cv2.line(src, righttop[0], righttop[1], (255, 255, 0), 7)
- cv2.imshow('line Image', src)
- src_2 = cv2.addWeighted(image, 0.8, src, 1, 0)
- cv2.imshow('Finally Image', src_2)
- cv2.waitKey(0)
待改进:
代码实用性差,几乎不能用于实际,但是可以作为初学者的练手项目;
斑马线检测思路:获取车前感兴趣区域,判断白色像素点比例即可实现;
行人检测思路:opencv有内置行人检测函数,基于内置的训练好的数据集;
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
原文链接:https://blog.csdn.net/qq_41473522/article/details/105426589