在对excel的操作中,调整列的顺序以及添加一些列也是经常用到的,下面我们用pandas实现这一功能。
1、调整列的顺序
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
>>> df = pd.read_excel(r 'D:/myExcel/1.xlsx' ) >>> df A B C D 0 bob 12 78 87 1 millor 15 92 21 >>> df.columns Index([ 'A' , 'B' , 'C' , 'D' ], dtype = 'object' ) # 这是最简单常用的一种方法,相当于指定列名让pandas # 从df中获取 >>> df[[ 'A' , 'D' , 'C' , 'B' ]] A D C B 0 bob 87 78 12 1 millor 21 92 15 # 这也是可以的 >>> df[[ 'A' , 'A' , 'A' , 'A' ]] A A A A 0 bob bob bob bob 1 millor millor millor millor |
2、添加某一列或者某几列
(1)直接添加
1
2
3
4
5
|
>>> df[ 'E' ] = [ 1 , 2 ] >>> df A B C D E 0 bob 12 78 87 1 1 millor 15 92 21 2 |
(2)调用assign方法。该方法善于根据已有的列添加新的列,通过基本运算,或者调用函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
>>> df A B C D 0 bob 12 78 87 1 millor 15 92 21 # 其中E是列名,根据B列-C列的值得到 >>> df.assign(E = df[ 'B' ] - df[ 'C' ]) A B C D E 0 bob 12 78 87 - 66 1 millor 15 92 21 - 77 # 添加两列也可以 >>> df.assign(E = df[ 'B' ] - df[ 'C' ], F = df[ 'B' ] * df[ 'C' ]) A B C D E F 0 bob 12 78 87 - 66 936 1 millor 15 92 21 - 77 1380 |
哈哈,以上就是pandas关于调整列的顺序以及新增列的用法
补充:pandas修改DataFrame中的列名&调整列的顺序
修改列名:
直接调用接口:
1
|
df.rename() |
看一下接口中的定义:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
def rename( self , * args, * * kwargs): """ Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- mapper, index, columns : dict-like or function, optional dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. axis : int or str, optional Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new DataFrame. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. Returns ------- renamed : DataFrame See Also -------- pandas.DataFrame.rename_axis Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(index=str, columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 >>> df.rename(index=str, columns={"A": "a", "C": "c"}) a B 0 1 4 1 2 5 2 3 6 Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ axes = validate_axis_style_args( self , args, kwargs, 'mapper' , 'rename' ) kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop( 'axis' , None ) kwargs.pop( 'mapper' , None ) return super (DataFrame, self ).rename( * * kwargs) |
注意:
一个*,输入可以是数组、元组,会把输入的数组或元组拆分成一个个元素。
两个*,输入必须是字典格式
示例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
>>> import pandas as pd >>>a = pd.DataFrame({ 'A' :[ 1 , 2 , 3 ], 'B' :[ 4 , 5 , 6 ], 'C' :[ 7 , 8 , 9 ]}) >>> a A B C 0 1 4 7 1 2 5 8 2 3 6 9 #将列名A替换为列名a,B改为b,C改为c >>>a.rename(columns = { 'A' : 'a' , 'B' : 'b' , 'C' : 'c' }, inplace = True ) >>>a a b c 0 1 4 7 1 2 5 8 2 3 6 9 |
调整列的顺序:
如:
1
2
3
4
5
6
7
8
9
10
11
|
>>> import pandas >>> dict_a = { 'user_id' :[ 'webbang' , 'webbang' , 'webbang' ], 'book_id' :[ '3713327' , '4074636' , '26873486' ], 'rating' :[ '4' , '4' , '4' ], 'mark_date' :[ '2017-03-07' , '2017-03-07' , '2017-03-07' ]} >>> df = pandas.DataFrame(dict_a) # 从字典创建DataFrame >>> df # 创建好的df列名默认按首字母顺序排序,和字典中的先后顺序并不一样,字典中'user_id','book_id','rating','mark_date' book_id mark_date rating user_id 0 3713327 2017 - 03 - 07 4 webbang 1 4074636 2017 - 03 - 07 4 webbang 2 26873486 2017 - 03 - 07 4 webbang |
直接修改列名:
1
2
3
4
5
6
7
|
>>> df = df[[ 'user_id' , 'book_id' , 'rating' , 'mark_date' ]] # 调整列顺序为'user_id','book_id','rating','mark_date' >>> df user_id book_id rating mark_date 0 webbang 3713327 4 2017 - 03 - 07 1 webbang 4074636 4 2017 - 03 - 07 2 webbang 26873486 4 2017 - 03 - 07 |
就可以了。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。
原文链接:https://blog.csdn.net/weixin_45144170/article/details/105007711