进程和线程
进程是系统进行资源分配的最小单位,线程是系统进行调度执行的最小单位;
一个应用程序至少包含一个进程,一个进程至少包含一个线程;
每个进程在执行过程中拥有独立的内存空间,而一个进程中的线程之间是共享该进程的内存空间的;
- 计算机的核心是CPU,它承担了所有的计算任务。它就像一座工厂,时刻在运行。
- 假定工厂的电力有限,一次只能供给一个车间使用。也就是说,一个车间开工的时候,其他车间都必须停工。背后的含义就是,单个CPU一次只能运行一个任务。编者注: 多核的CPU就像有了多个发电厂,使多工厂(多进程)实现可能。
- 进程就好比工厂的车间,它代表CPU所能处理的单个任务。任一时刻,CPU总是运行一个进程,其他进程处于非运行状态。
- 一个车间里,可以有很多工人。他们协同完成一个任务。
- 线程就好比车间里的工人。一个进程可以包括多个线程。
- 车间的空间是工人们共享的,比如许多房间是每个工人都可以进出的。这象征一个进程的内存空间是共享的,每个线程都可以使用这些共享内存。
- 可是,每间房间的大小不同,有些房间最多只能容纳一个人,比如厕所。里面有人的时候,其他人就不能进去了。这代表一个线程使用某些共享内存时,其他线程必须等它结束,才能使用这一块内存。
- 一个防止他人进入的简单方法,就是门口加一把锁。先到的人锁上门,后到的人看到上锁,就在门口排队,等锁打开再进去。这就叫"互斥锁"(Mutual exclusion,缩写 Mutex),防止多个线程同时读写某一块内存区域。
- 还有些房间,可以同时容纳n个人,比如厨房。也就是说,如果人数大于n,多出来的人只能在外面等着。这好比某些内存区域,只能供给固定数目的线程使用。
- 这时的解决方法,就是在门口挂n把钥匙。进去的人就取一把钥匙,出来时再把钥匙挂回原处。后到的人发现钥匙架空了,就知道必须在门口排队等着了。这种做法叫做"信号量"(Semaphore),用来保证多个线程不会互相冲突。
- 不难看出,mutex是semaphore的一种特殊情况(n=1时)。也就是说,完全可以用后者替代前者。但是,因为mutex较为简单,且效率高,所以在必须保证资源独占的情况下,还是采用这种设计。
Python的多进程
Python的多进程依赖于multiprocess模块;使用多进程可以利用多个CPU进行并行计算;
实例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
from multiprocessing import Process import os import time def long_time_task(i): print ( '子进程: {} - 任务{}' . format (os.getpid(), i)) time.sleep( 2 ) print ( "结果: {}" . format ( 8 * * 20 )) if __name__ = = '__main__' : print ( '当前母进程: {}' . format (os.getpid())) start = time.time() p1 = Process(target = long_time_task, args = ( 1 ,)) p2 = Process(target = long_time_task, args = ( 2 ,)) print ( '等待所有子进程完成。' ) p1.start() p2.start() p1.join() p2.join() end = time.time() print ( "总共用时{}秒" . format ((end - start))) |
新创建进程和进程间切换是需要消耗资源的,所以应该控制进程数量;
同时可运行的进程数量收到CPU核数限制;
进程池
使用进程池pool创建进程:
使用进程池可以避免手工进行进程的创建的麻烦,默认数量是CPU核数;
Pool类可以提供指定数量的进程供用户使用,当有新的请求被提交到Pool中的时候,如果进程池还没有满,就会创建一个新的进程来执行请求;如果池已经满了,请求就会等待,等到有空闲进程可以使用时,才会执行请求;
几个方法:
1.apply_async
作用是向进程池提交需要执行的函数和参数,各个进程采用非阻塞的异步方式调用,每个进程只管自己运行,是默认方式;
2.map
会阻塞进程直到返回结果;
3.map_sunc
非阻塞进程;
4.close
关闭进程池,不再接受任务;
5.terminate
结束进程;
6.join
主进程阻塞,直到子进程执行结束;
实例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
from multiprocessing import Pool, cpu_count import os import time def long_time_task(i): print ( '子进程: {} - 任务{}' . format (os.getpid(), i)) time.sleep( 2 ) print ( "结果: {}" . format ( 8 * * 20 )) if __name__ = = '__main__' : print ( "CPU内核数:{}" . format (cpu_count())) print ( '当前母进程: {}' . format (os.getpid())) start = time.time() p = Pool( 4 ) for i in range ( 5 ): p.apply_async(long_time_task, args = (i,)) print ( '等待所有子进程完成。' ) p.close() p.join() end = time.time() print ( "总共用时{}秒" . format ((end - start))) |
在join之前,必须使用close或者terminate,让进程池不再接受任务;
多进程间的数据通信与共享
通常,进程之间是相互独立的,每个进程都有独立的内存。通过共享内存(nmap模块),进程之间可以共享对象,使多个进程可以访问同一个变量(地址相同,变量名可能不同)。多进程共享资源必然会导致进程间相互竞争,所以应该尽最大可能防止使用共享状态。还有一种方式就是使用队列queue来实现不同进程间的通信或数据共享,这一点和多线程编程类似。
下例这段代码中中创建了2个独立进程,一个负责写(pw), 一个负责读(pr), 实现了共享一个队列queue。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
from multiprocessing import Process, Queue import os, time, random # 写数据进程执行的代码: def write(q): print ( 'Process to write: {}' . format (os.getpid())) for value in [ 'A' , 'B' , 'C' ]: print ( 'Put %s to queue...' % value) q.put(value) time.sleep(random.random()) # 读数据进程执行的代码: def read(q): print ( 'Process to read:{}' . format (os.getpid())) while True : value = q.get( True ) print ( 'Get %s from queue.' % value) if __name__ = = '__main__' : # 父进程创建Queue,并传给各个子进程: q = Queue() pw = Process(target = write, args = (q,)) pr = Process(target = read, args = (q,)) # 启动子进程pw,写入: pw.start() # 启动子进程pr,读取: pr.start() # 等待pw结束: pw.join() # pr进程里是死循环,无法等待其结束,只能强行终止: pr.terminate() |
Python的多线程
python 3中的多进程编程主要依靠threading模块。创建新线程与创建新进程的方法非常类似。threading.Thread方法可以接收两个参数, 第一个是target,一般指向函数名,第二个时args,需要向函数传递的参数。对于创建的新线程,调用start()方法即可让其开始。我们还可以使用current_thread().name打印出当前线程的名字。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
import threading import time def long_time_task(i): print ( '当前子线程: {} 任务{}' . format (threading.current_thread().name, i)) time.sleep( 2 ) print ( "结果: {}" . format ( 8 * * 20 )) if __name__ = = '__main__' : start = time.time() print ( '这是主线程:{}' . format (threading.current_thread().name)) thread_list = [] for i in range ( 1 , 3 ): t = threading.Thread(target = long_time_task, args = (i, )) thread_list.append(t) for t in thread_list: t.start() for t in thread_list: t.join() end = time.time() print ( "总共用时{}秒" . format ((end - start))) |
多线程间的数据共享
一个进程所含的不同线程间共享内存,这就意味着任何一个变量都可以被任何一个线程修改,因此线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。如果不同线程间有共享的变量,其中一个方法就是在修改前给其上一把锁lock,确保一次只有一个线程能修改它。threading.lock()方法可以轻易实现对一个共享变量的锁定,修改完后release供其它线程使用。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
import threading class Account: def __init__( self ): self .balance = 0 def add( self , lock): # 获得锁 lock.acquire() for i in range ( 0 , 100000 ): self .balance + = 1 # 释放锁 lock.release() def delete( self , lock): # 获得锁 lock.acquire() for i in range ( 0 , 100000 ): self .balance - = 1 # 释放锁 lock.release() if __name__ = = "__main__" : account = Account() lock = threading.Lock() # 创建线程 thread_add = threading.Thread(target = account.add, args = (lock,), name = 'Add' ) thread_delete = threading.Thread(target = account.delete, args = (lock,), name = 'Delete' ) # 启动线程 thread_add.start() thread_delete.start() # 等待线程结束 thread_add.join() thread_delete.join() print ( 'The final balance is: {}' . format (account.balance)) |
使用queue队列通信-经典的生产者和消费者模型
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
from queue import Queue import random, threading, time # 生产者类 class Producer(threading.Thread): def __init__( self , name, queue): threading.Thread.__init__( self , name = name) self .queue = queue def run( self ): for i in range ( 1 , 5 ): print ( "{} is producing {} to the queue!" . format ( self .getName(), i)) self .queue.put(i) time.sleep(random.randrange( 10 ) / 5 ) print ( "%s finished!" % self .getName()) # 消费者类 class Consumer(threading.Thread): def __init__( self , name, queue): threading.Thread.__init__( self , name = name) self .queue = queue def run( self ): for i in range ( 1 , 5 ): val = self .queue.get() print ( "{} is consuming {} in the queue." . format ( self .getName(), val)) time.sleep(random.randrange( 10 )) print ( "%s finished!" % self .getName()) def main(): queue = Queue() producer = Producer( 'Producer' , queue) consumer = Consumer( 'Consumer' , queue) producer.start() consumer.start() producer.join() consumer.join() print ( 'All threads finished!' ) if __name__ = = '__main__' : main() |
- 对CPU密集型代码(比如循环计算) - 多进程效率更高
- 对IO密集型代码(比如文件操作,网络爬虫) - 多线程效率更高。
对于IO密集型操作,大部分消耗时间其实是等待时间,在等待时间中CPU是不需要工作的,那你在此期间提供双CPU资源也是利用不上的,相反对于CPU密集型代码,2个CPU干活肯定比一个CPU快很多。那么为什么多线程会对IO密集型代码有用呢?这时因为python碰到等待会释放GIL供新的线程使用,实现了线程间的切换。
以上就是python 多进程和多线程使用详解的详细内容,更多关于python 多进程和多线程的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/travellingcat/p/14589098.html