本文实例为大家分享了pytorch实现线性回归以及多元回归的具体代码,供大家参考,具体内容如下
最近在学习pytorch,现在把学习的代码放在这里,下面是github链接
直接附上github代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
# 实现一个线性回归 # 所有的层结构和损失函数都来自于 torch.nn # torch.optim 是一个实现各种优化算法的包,调用的时候必须是需要优化的参数传入,这些参数都必须是variable x_train = np.array([[ 3.3 ],[ 4.4 ],[ 5.5 ],[ 6.71 ],[ 6.93 ],[ 4.168 ],[ 9.779 ],[ 6.182 ],[ 7.59 ],[ 2.167 ],[ 7.042 ],[ 10.791 ],[ 5.313 ],[ 7.997 ],[ 3.1 ]],dtype = np.float32) y_train = np.array([[ 1.7 ],[ 2.76 ],[ 2.09 ],[ 3.19 ],[ 1.694 ],[ 1.573 ],[ 3.366 ],[ 2.596 ],[ 2.53 ],[ 1.221 ],[ 2.827 ],[ 3.465 ],[ 1.65 ],[ 2.904 ],[ 1.3 ]],dtype = np.float32) # 首先我们需要将array转化成tensor,因为pytorch处理的单元是tensor x_train = torch.from_numpy(x_train) y_train = torch.from_numpy(y_train) # def a simple network class linearregression(nn.module): def __init__( self ): super (linearregression, self ).__init__() self .linear = nn.linear( 1 , 1 ) # input and output is 2_dimension def forward( self , x): out = self .linear(x) return out if torch.cuda.is_available(): model = linearregression().cuda() #model = model.cuda() else : model = linearregression() #model = model.cuda() # 定义loss function 和 optimize func criterion = nn.mseloss() # 均方误差作为优化函数 optimizer = torch.optim.sgd(model.parameters(),lr = 1e - 3 ) num_epochs = 30000 for epoch in range (num_epochs): if torch.cuda.is_available(): inputs = variable(x_train).cuda() outputs = variable(y_train).cuda() else : inputs = variable(x_train) outputs = variable(y_train) # forward out = model(inputs) loss = criterion(out,outputs) # backword optimizer.zero_grad() # 每次做反向传播之前都要进行归零梯度。不然梯度会累加在一起,造成不收敛的结果 loss.backward() optimizer.step() if (epoch + 1 ) % 20 = = 0 : print ( 'epoch[{}/{}], loss: {:.6f}' . format (epoch + 1 ,num_epochs,loss.data)) model. eval () # 将模型变成测试模式 predict = model(variable(x_train).cuda()) predict = predict.data.cpu().numpy() plt.plot(x_train.numpy(),y_train.numpy(), 'ro' ,label = 'original data' ) plt.plot(x_train.numpy(),predict,label = 'fitting line' ) plt.show() |
结果如图所示:
多元回归:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
# _*_encoding=utf-8_*_ # pytorch 里面最基本的操作对象是tensor,pytorch 的tensor可以和numpy的ndarray相互转化。 # 实现一个线性回归 # 所有的层结构和损失函数都来自于 torch.nn # torch.optim 是一个实现各种优化算法的包,调用的时候必须是需要优化的参数传入,这些参数都必须是variable # 实现 y = b + w1 *x + w2 *x**2 +w3*x**3 import os os.environ[ 'cuda_device_order' ] = "pci_bus_id" os.environ[ 'cuda_visible_devices' ] = '0' import torch import numpy as np from torch.autograd import variable import matplotlib.pyplot as plt from torch import nn # pre_processing def make_feature(x): x = x.unsqueeze( 1 ) # unsquenze 是为了添加维度1的,0表示第一维度,1表示第二维度,将tensor大小由3变为(3,1) return torch.cat([x * * i for i in range ( 1 , 4 )], 1 ) # 定义好真实的数据 def f(x): w_output = torch.tensor([ 0.5 , 3 , 2.4 ]).unsqueeze( 1 ) b_output = torch.tensor([ 0.9 ]) return x.mm(w_output) + b_output[ 0 ] # 外积,矩阵乘法 # 批量处理数据 def get_batch(batch_size = 32 ): random = torch.randn(batch_size) x = make_feature(random) y = f(x) if torch.cuda.is_available(): return variable(x).cuda(),variable(y).cuda() else : return variable(x),variable(y) # def model class poly_model(nn.module): def __init__( self ): super (poly_model, self ).__init__() self .poly = nn.linear( 3 , 1 ) def forward( self , input ): output = self .poly( input ) return output if torch.cuda.is_available(): print ( "sdf" ) model = poly_model().cuda() else : model = poly_model() # 定义损失函数和优化器 criterion = nn.mseloss() optimizer = torch.optim.sgd(model.parameters(), lr = 1e - 3 ) epoch = 0 while true: batch_x, batch_y = get_batch() #print(batch_x) output = model(batch_x) loss = criterion(output,batch_y) print_loss = loss.data optimizer.zero_grad() loss.backward() optimizer.step() epoch = epoch + 1 if print_loss < 1e - 3 : print (print_loss) break model. eval () print ( "epoch = {}" . format (epoch)) batch_x, batch_y = get_batch() predict = model(batch_x) a = predict - batch_y y = torch. sum (a) print ( 'y = ' ,y) predict = predict.data.cpu().numpy() plt.plot(batch_x.cpu().numpy(),batch_y.cpu().numpy(), 'ro' ,label = 'original data' ) plt.plot(batch_x.cpu().numpy(),predict, 'b' , ls = '--' ,label = 'fitting line' ) plt.show() |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/weili_/article/details/82959756