如需安装运行环境或远程调试,可加QQ905733049, 或QQ2945218359由专业技术人员远程协助!
运行结果如下:
代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
import wx import wx.grid from time import localtime,strftime import os import io import zlib import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库numpy import cv2 # 图像处理的库OpenCv import _thread import threading ID_NEW_REGISTER = 160 ID_FINISH_REGISTER = 161 ID_START_PUNCHCARD = 190 ID_END_PUNCARD = 191 ID_OPEN_LOGCAT = 283 ID_CLOSE_LOGCAT = 284 ID_WORKER_UNAVIABLE = - 1 PATH_FACE = "data/face_img_database/" # face recognition model, the object maps human faces into 128D vectors facerec = dlib.face_recognition_model_v1( "model/dlib_face_recognition_resnet_model_v1.dat" ) # Dlib 预测器 detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor( 'model/shape_predictor_68_face_landmarks.dat' ) class WAS(wx.Frame): def __init__( self ): wx.Frame.__init__( self ,parent = None ,title = "员工考勤系统" ,size = ( 920 , 560 )) self .initMenu() self .initInfoText() self .initGallery() self .initDatabase() self .initData() def initData( self ): self .name = "" self . id = ID_WORKER_UNAVIABLE self .face_feature = "" self .pic_num = 0 self .flag_registed = False self .puncard_time = "21:00:00" self .loadDataBase( 1 ) def initMenu( self ): menuBar = wx.MenuBar() #生成菜单栏 menu_Font = wx.Font() #Font(faceName="consolas",pointsize=20) menu_Font.SetPointSize( 14 ) menu_Font.SetWeight(wx.BOLD) registerMenu = wx.Menu() #生成菜单 self .new_register = wx.MenuItem(registerMenu,ID_NEW_REGISTER, "新建录入" ) self .new_register.SetBitmap(wx.Bitmap( "drawable/new_register.png" )) self .new_register.SetTextColour( "SLATE BLUE" ) self .new_register.SetFont(menu_Font) registerMenu.Append( self .new_register) self .finish_register = wx.MenuItem(registerMenu,ID_FINISH_REGISTER, "完成录入" ) self .finish_register.SetBitmap(wx.Bitmap( "drawable/finish_register.png" )) self .finish_register.SetTextColour( "SLATE BLUE" ) self .finish_register.SetFont(menu_Font) self .finish_register.Enable( False ) registerMenu.Append( self .finish_register) puncardMenu = wx.Menu() self .start_punchcard = wx.MenuItem(puncardMenu,ID_START_PUNCHCARD, "开始签到" ) self .start_punchcard.SetBitmap(wx.Bitmap( "drawable/start_punchcard.png" )) self .start_punchcard.SetTextColour( "SLATE BLUE" ) self .start_punchcard.SetFont(menu_Font) puncardMenu.Append( self .start_punchcard) self .close_logcat = wx.MenuItem(logcatMenu, ID_CLOSE_LOGCAT, "关闭日志" ) self .close_logcat.SetBitmap(wx.Bitmap( "drawable/close_logcat.png" )) self .close_logcat.SetFont(menu_Font) self .close_logcat.SetTextColour( "SLATE BLUE" ) logcatMenu.Append( self .close_logcat) menuBar.Append(registerMenu, "&人脸录入" ) menuBar.Append(puncardMenu, "&刷脸签到" ) menuBar.Append(logcatMenu, "&考勤日志" ) self .SetMenuBar(menuBar) self .Bind(wx.EVT_MENU, self .OnNewRegisterClicked, id = ID_NEW_REGISTER) self .Bind(wx.EVT_MENU, self .OnFinishRegisterClicked, id = ID_FINISH_REGISTER) self .Bind(wx.EVT_MENU, self .OnStartPunchCardClicked, id = ID_START_PUNCHCARD) self .Bind(wx.EVT_MENU, self .OnEndPunchCardClicked, id = ID_END_PUNCARD) self .Bind(wx.EVT_MENU, self .OnOpenLogcatClicked, id = ID_OPEN_LOGCAT) self .Bind(wx.EVT_MENU, self .OnCloseLogcatClicked, id = ID_CLOSE_LOGCAT) pass def OnCloseLogcatClicked( self ,event): self .SetSize( 920 , 560 ) self .initGallery() pass def register_cap( self ,event): # 创建 cv2 摄像头对象 self .cap = cv2.VideoCapture( 0 ) # cap.set(propId, value) # 设置视频参数,propId设置的视频参数,value设置的参数值 # self.cap.set(3, 600) # self.cap.set(4,600) # cap是否初始化成功 while self .cap.isOpened(): # cap.read() # 返回两个值: # 一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾 # 图像对象,图像的三维矩阵 flag, im_rd = self .cap.read() # 每帧数据延时1ms,延时为0读取的是静态帧 kk = cv2.waitKey( 1 ) # 人脸数 dets dets = detector(im_rd, 1 ) # 检测到人脸 if len (dets) ! = 0 : biggest_face = dets[ 0 ] #取占比最大的脸 maxArea = 0 for det in dets: w = det.right() - det.left() h = det.top() - det.bottom() if w * h > maxArea: biggest_face = det maxArea = w * h # 绘制矩形框 cv2.rectangle(im_rd, tuple ([biggest_face.left(), biggest_face.top()]), tuple ([biggest_face.right(), biggest_face.bottom()]), ( 255 , 0 , 0 ), 2 ) img_height, img_width = im_rd.shape[: 2 ] image1 = cv2.cvtColor(im_rd, cv2.COLOR_BGR2RGB) pic = wx.Bitmap.FromBuffer(img_width, img_height, image1) # 显示图片在panel上 self .bmp.SetBitmap(pic) # 获取当前捕获到的图像的所有人脸的特征,存储到 features_cap_arr shape = predictor(im_rd, biggest_face) features_cap = facerec.compute_face_descriptor(im_rd, shape) # 对于某张人脸,遍历所有存储的人脸特征 for i,knew_face_feature in enumerate ( self .knew_face_feature): # 将某张人脸与存储的所有人脸数据进行比对 compare = return_euclidean_distance(features_cap, knew_face_feature) if compare = = "same" : # 找到了相似脸 self .infoText.AppendText( self .getDateAndTime() + "工号:" + str ( self .knew_id[i]) + " 姓名:" + self .knew_name[i] + " 的人脸数据已存在\r\n" ) self .flag_registed = True self .OnFinishRegister() _thread.exit() # print(features_known_arr[i][-1]) face_height = biggest_face.bottom() - biggest_face.top() face_width = biggest_face.right() - biggest_face.left() im_blank = np.zeros((face_height, face_width, 3 ), np.uint8) try : for ii in range (face_height): for jj in range (face_width): im_blank[ii][jj] = im_rd[biggest_face.top() + ii]parent = self .bmp, max = 100000000 , min = ID_WORKER_UNAVIABLE) for knew_id in self .knew_id: if knew_id = = self . id : self . id = ID_WORKER_UNAVIABLE wx.MessageBox(message = "工号已存在,请重新输入" , caption = "警告" ) while self .name = = '': self .name = wx.GetTextFromUser(message = "请输入您的的姓名,用于创建姓名文件夹" , caption = "温馨提示" , default_value = "", parent = self .bmp) # 监测是否重名 for exsit_name in (os.listdir(PATH_FACE)): if self .name = = exsit_name: wx.MessageBox(message = "姓名文件夹已存在,请重新输入" , caption = "警告" ) self .name = '' break os.makedirs(PATH_FACE + self .name) _thread.start_new_thread( self .register_cap,(event,)) pass def OnFinishRegister( self ): self .new_register.Enable( True ) self .finish_register.Enable( False ) self .cap.release() self .bmp.SetBitmap(wx.Bitmap( self .pic_index)) if self .flag_registed = = True : dir = PATH_FACE + self .name for file in os.listdir( dir ): os.remove( dir + "/" + file ) print ( "已删除已录入人脸的图片" , dir + "/" + file ) os.rmdir(PATH_FACE + self .name) print ( "已删除已录入人脸的姓名文件夹" , dir ) self .initData() return if self .pic_num> 0 : pics = os.listdir(PATH_FACE + self .name) feature_list = [] feature_average = [] for i in range ( len (pics)): pic_path = PATH_FACE + self .name + "/" + pics[i] print ( "正在读的人脸图像:" , pic_path) img = iio.imread(pic_path) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) dets = detector(img_gray, 1 ) if len (dets) ! = 0 : shape = predictor(img_gray, dets[ 0 ]) face_descriptor = facerec.compute_face_descriptor(img_gray, shape) feature_list.append(face_descriptor) else : face_descriptor = 0 print ( "未在照片中识别到人脸" ) if len (feature_list) > 0 : for j in range ( 128 ): #防止越界 feature_average.append( 0 ) for i in range ( len (feature_list)): feature_average[j] + = feature_list[i][j] feature_average[j] = (feature_average[j]) / len (feature_list) self .insertARow([ self . id , self .name,feature_average], 1 ) self .infoText.AppendText( self .getDateAndTime() + "工号:" + str ( self . id ) + " 姓名:" + self .name + " 的人脸数据已成功存入\r\n" ) pass else : os.rmdir(PATH_FACE + self .name) print ( "已删除空文件夹" ,PATH_FACE + self .name) self .initData() def OnFinishRegisterClicked( self ,event): self .OnFinishRegister() pass def OnStartPunchCardClicked( self ,event): # cur_hour = datetime.datetime.now().hour # print(cur_hour) # if cur_hour>=8 or cur_hour<6: # wx.MessageBox(message='''您错过了今天的签到时间,请明天再来\n # 每天的签到时间是:6:00~7:59''', caption="警告") # return self .start_punchcard.Enable( False ) self .end_puncard.Enable( True ) self .loadDataBase( 2 ) threading.Thread(target = self .punchcard_cap,args = (event,)).start() #_thread.start_new_thread(self.punchcard_cap,(event,)) pass def OnEndPunchCardClicked( self ,event): self .start_punchcard.Enable( True ) self .end_puncard.Enable( False ) pass def initGallery( self ): self .pic_index = wx.Image( "drawable/index.png" , wx.BITMAP_TYPE_ANY).Scale( 600 , 500 ) self .bmp = wx.StaticBitmap(parent = self , pos = ( 320 , 0 ), bitmap = wx.Bitmap( self .pic_index)) pass def getDateAndTime( self ): dateandtime = strftime( "%Y-%m-%d %H:%M:%S" ,localtime()) return "[" + dateandtime + "]" #数据库部分 #初始化数据库 def initDatabase( self ): conn = sqlite3.connect( "inspurer.db" ) #建立数据库连接 cur = conn.cursor() #得到游标对象 cur.execute( '''create table if not exists worker_info (name text not null, id int not null primary key, face_feature array not null)''' ) cur.execute( '''create table if not exists logcat (datetime text not null, id int not null, name text not null, late text not null)''' ) cur.close() conn.commit() conn.close() def adapt_array( self ,arr): out = io.BytesIO() np.save(out, arr) out.seek( 0 ) dataa = out.read() # 压缩数据流 return sqlite3.Binary(zlib.compress(dataa, zlib.Z_BEST_COMPRESSION)) def convert_array( self ,text): out = io.BytesIO(text) out.seek( 0 ) dataa = out.read() # 解压缩数据流 out = io.BytesIO(zlib.decompress(dataa)) return np.load(out) def insertARow( self ,Row, type ): conn = sqlite3.connect( "inspurer.db" ) # 建立数据库连接 cur = conn.cursor() # 得到游标对象 if type = = 1 : cur.execute( "insert into worker_info (id,name,face_feature) values(?,?,?)" , (Row[ 0 ],Row[ 1 ], self .adapt_array(Row[ 2 ]))) print ( "写人脸数据成功" ) if type = = 2 : cur.execute( "insert into logcat (id,name,datetime,late) values(?,?,?,?)" , (Row[ 0 ],Row[ 1 ],Row[ 2 ],Row[ 3 ])) print ( "写日志成功" ) pass cur.close() conn.commit() conn.close() pass def loadDataBase( self , type ): conn = sqlite3.connect( "inspurer.db" ) # 建立数据库连接 cur = conn.cursor() # 得到游标对象 if type = = 1 : self .knew_id = [] self .knew_name = [] self .knew_face_feature = [] cur.execute( 'select id,name,face_feature from worker_info' ) origin = cur.fetchall() for row in origin: print (row[ 0 ]) self .knew_id.append(row[ 0 ]) print (row[ 1 ]) self .knew_name.append(row[ 1 ]) print ( self .convert_array(row[ 2 ])) self .knew_face_feature.append( self .convert_array(row[ 2 ])) if type = = 2 : self .logcat_id = [] self .logcat_name = [] self .logcat_datetime = [] self .logcat_late = [] cur.execute( 'select id,name,datetime,late from logcat' ) origin = cur.fetchall() for row in origin: print (row[ 0 ]) self .logcat_id.append(row[ 0 ]) print (row[ 1 ]) self .logcat_name.append(row[ 1 ]) print (row[ 2 ]) self .logcat_datetime.append(row[ 2 ]) print (row[ 3 ]) self .logcat_late.append(row[ 3 ]) pass app = wx.App() frame = WAS() frame.Show() app.MainLoop() |
运行结果如下:
到此这篇关于python opencv人脸识别考勤系统的完整源码的文章就介绍到这了,更多相关python 人脸识别考勤系统内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!
原文链接:https://blog.csdn.net/alicema1111/article/details/116088711