服务器之家

服务器之家 > 正文

Pytorch BCELoss和BCEWithLogitsLoss的使用

时间:2021-10-29 10:00     来源/作者:豪哥123

BCELoss

在图片多标签分类时,如果3张图片分3类,会输出一个3*3的矩阵。

Pytorch BCELoss和BCEWithLogitsLoss的使用

先用Sigmoid给这些值都搞到0~1之间:

Pytorch BCELoss和BCEWithLogitsLoss的使用

假设Target是:

Pytorch BCELoss和BCEWithLogitsLoss的使用

Pytorch BCELoss和BCEWithLogitsLoss的使用

下面我们用BCELoss来验证一下Loss是不是0.7194!

Pytorch BCELoss和BCEWithLogitsLoss的使用

emmm应该是我上面每次都保留4位小数,算到最后误差越来越大差了0.0001。不过也很厉害啦哈哈哈哈哈!

BCEWithLogitsLoss

BCEWithLogitsLoss就是把Sigmoid-BCELoss合成一步。我们直接用刚刚的input验证一下是不是0.7193:

Pytorch BCELoss和BCEWithLogitsLoss的使用

嘻嘻,我可真是太厉害啦!

补充:Pytorch中BCELoss,BCEWithLogitsLoss和CrossEntropyLoss的区别

BCEWithLogitsLoss = Sigmoid+BCELoss

当网络最后一层使用nn.Sigmoid时,就用BCELoss,当网络最后一层不使用nn.Sigmoid时,就用BCEWithLogitsLoss。

(BCELoss)BCEWithLogitsLoss

用于单标签二分类或者多标签二分类,输出和目标的维度是(batch,C),batch是样本数量,C是类别数量,对于每一个batch的C个值,对每个值求sigmoid到0-1之间,所以每个batch的C个值之间是没有关系的,相互独立的,所以之和不一定为1。

每个C值代表属于一类标签的概率。如果是单标签二分类,那输出和目标的维度是(batch,1)即可。

CrossEntropyLoss用于多类别分类

输出和目标的维度是(batch,C),batch是样本数量,C是类别数量,每一个C之间是互斥的,相互关联的,对于每一个batch的C个值,一起求每个C的softmax,所以每个batch的所有C个值之和是1,哪个值大,代表其属于哪一类。如果用于二分类,那输出和目标的维度是(batch,2)。

补充:Pytorch踩坑记之交叉熵(nn.CrossEntropy,nn.NLLLoss,nn.BCELoss的区别和使用)

在Pytorch中的交叉熵函数的血泪史要从nn.CrossEntropyLoss()这个损失函数开始讲起。

从表面意义上看,这个函数好像是普通的交叉熵函数,但是如果你看过一些Pytorch的资料,会告诉你这个函数其实是softmax()和交叉熵的结合体。

然而如果去官方看这个函数的定义你会发现是这样子的:

Pytorch BCELoss和BCEWithLogitsLoss的使用

哇,竟然是nn.LogSoftmax()和nn.NLLLoss()的结合体,这俩都是什么玩意儿啊。再看看你会发现甚至还有一个损失叫nn.Softmax()以及一个叫nn.nn.BCELoss()。我们来探究下这几个损失到底有何种关系。

nn.Softmax和nn.LogSoftmax

首先nn.Softmax()官网的定义是这样的:

Pytorch BCELoss和BCEWithLogitsLoss的使用

嗯...就是我们认识的那个softmax。那nn.LogSoftmax()的定义也很直观了:

Pytorch BCELoss和BCEWithLogitsLoss的使用

果不其然就是Softmax取了个log。可以写个代码测试一下:

import torch
import torch.nn as nn
 
a = torch.Tensor([1,2,3])
#定义Softmax
softmax = nn.Softmax()
sm_a = softmax=nn.Softmax()
print(sm)
#输出:tensor([0.0900, 0.2447, 0.6652])
 
#定义LogSoftmax
logsoftmax = nn.LogSoftmax()
lsm_a = logsoftmax(a)
print(lsm_a)
#输出tensor([-2.4076, -1.4076, -0.4076]),其中ln(0.0900)=-2.4076

nn.NLLLoss

上面说过nn.CrossEntropy()是nn.LogSoftmax()和nn.NLLLoss的结合,nn.NLLLoss官网给的定义是这样的:

The negative log likelihood loss. It is useful to train a classification problem with C classes

Pytorch BCELoss和BCEWithLogitsLoss的使用

负对数似然损失 ,看起来好像有点晦涩难懂,写个代码测试一下:

import torch
import torch.nn
 
a = torch.Tensor([[1,2,3]])
nll = nn.NLLLoss()
target1 = torch.Tensor([0]).long()
target2 = torch.Tensor([1]).long()
target3 = torch.Tensor([2]).long()
 
#测试
n1 = nll(a,target1)
#输出:tensor(-1.)
n2 = nll(a,target2)
#输出:tensor(-2.)
n3 = nll(a,target3)
#输出:tensor(-3.)

看起来nn.NLLLoss做的事情是取出a中对应target位置的值并取负号,比如target1=0,就取a中index=0位置上的值再取负号为-1,那这样做有什么意义呢,要结合nn.CrossEntropy往下看。

nn.CrossEntropy

看下官网给的nn.CrossEntropy()的表达式:

Pytorch BCELoss和BCEWithLogitsLoss的使用

看起来应该是softmax之后取了个对数,写个简单代码测试一下:

import torch
import torch.nn as nn
 
a = torch.Tensor([[1,2,3]])
target = torch.Tensor([2]).long()
logsoftmax = nn.LogSoftmax()
ce = nn.CrossEntropyLoss()
nll = nn.NLLLoss()
 
#测试CrossEntropyLoss
cel = ce(a,target)
print(cel)
#输出:tensor(0.4076)
 
#测试LogSoftmax+NLLLoss
lsm_a = logsoftmax(a)
nll_lsm_a = nll(lsm_a,target)
#输出tensor(0.4076)

看来直接用nn.CrossEntropy和nn.LogSoftmax+nn.NLLLoss是一样的结果。为什么这样呢,回想下交叉熵的表达式:

Pytorch BCELoss和BCEWithLogitsLoss的使用

其中y是label,x是prediction的结果,所以其实交叉熵损失就是负的target对应位置的输出结果x再取-log。这个计算过程刚好就是先LogSoftmax()再NLLLoss()。

------------------------------------

所以我认为nn.CrossEntropyLoss其实应该叫做softmaxloss更为合理一些,这样就不会误解了。

nn.BCELoss

你以为这就完了吗,其实并没有。还有一类损失叫做BCELoss,写全了的话就是Binary Cross Entropy Loss,就是交叉熵应用于二分类时候的特殊形式,一般都和sigmoid一起用,表达式就是二分类交叉熵:

Pytorch BCELoss和BCEWithLogitsLoss的使用

直觉上和多酚类交叉熵的区别在于,不仅考虑了Pytorch BCELoss和BCEWithLogitsLoss的使用的样本,也考虑了Pytorch BCELoss和BCEWithLogitsLoss的使用的样本的损失。

总结

nn.LogSoftmax是在softmax的基础上取自然对数nn.NLLLoss是负的似然对数损失,但Pytorch的实现就是把对应target上的数取出来再加个负号,要在CrossEntropy中结合LogSoftmax来用BCELoss是二分类的交叉熵损失,Pytorch实现中和多分类有区别

Pytorch是个深坑,让我们一起扎根使用手册,结合实践踏平这些坑吧暴风哭泣

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/qq_22210253/article/details/85222093

相关文章

热门资讯

yue是什么意思 网络流行语yue了是什么梗
yue是什么意思 网络流行语yue了是什么梗 2020-10-11
2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全
2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全 2019-12-26
背刺什么意思 网络词语背刺是什么梗
背刺什么意思 网络词语背刺是什么梗 2020-05-22
2021年耽改剧名单 2021要播出的59部耽改剧列表
2021年耽改剧名单 2021要播出的59部耽改剧列表 2021-03-05
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总 2020-11-13
返回顶部

1322
Weibo Article 1 Weibo Article 2 Weibo Article 3 Weibo Article 4 Weibo Article 5 Weibo Article 6 Weibo Article 7 Weibo Article 8 Weibo Article 9 Weibo Article 10 Weibo Article 11 Weibo Article 12 Weibo Article 13 Weibo Article 14 Weibo Article 15 Weibo Article 16 Weibo Article 17 Weibo Article 18 Weibo Article 19 Weibo Article 20 Weibo Article 21 Weibo Article 22 Weibo Article 23 Weibo Article 24 Weibo Article 25 Weibo Article 26 Weibo Article 27 Weibo Article 28 Weibo Article 29 Weibo Article 30 Weibo Article 31 Weibo Article 32 Weibo Article 33 Weibo Article 34 Weibo Article 35 Weibo Article 36 Weibo Article 37 Weibo Article 38 Weibo Article 39 Weibo Article 40