在使用tensorflow与keras混用是model.save 是正常的但是在load_model的时候报错了在这里mark 一下
其中错误为:TypeError: tuple indices must be integers, not list
再一一番百度后无结果,上谷歌后找到了类似的问题。但是是一对鸟文不知道什么东西(翻译后发现是俄文)。后来谷歌翻译了一下找到了解决方法。故将原始问题文章贴上来警示一下
原训练代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense #Каталог с данными для обучения train_dir = 'train' # Каталог с данными для проверки val_dir = 'val' # Каталог с данными для тестирования test_dir = 'val' # Размеры изображения img_width, img_height = 800 , 800 # Размерность тензора на основе изображения для входных данных в нейронную сеть # backend Tensorflow, channels_last input_shape = (img_width, img_height, 3 ) # Количество эпох epochs = 1 # Размер мини-выборки batch_size = 4 # Количество изображений для обучения nb_train_samples = 300 # Количество изображений для проверки nb_validation_samples = 25 # Количество изображений для тестирования nb_test_samples = 25 model = Sequential() model.add(Conv2D( 32 , ( 7 , 7 ), padding = "same" , input_shape = input_shape)) model.add(BatchNormalization()) model.add(Activation( 'tanh' )) model.add(MaxPooling2D(pool_size = ( 10 , 10 ))) model.add(Conv2D( 64 , ( 5 , 5 ), padding = "same" )) model.add(BatchNormalization()) model.add(Activation( 'tanh' )) model.add(MaxPooling2D(pool_size = ( 10 , 10 ))) model.add(Flatten()) model.add(Dense( 512 )) model.add(Activation( 'relu' )) model.add(Dropout( 0.5 )) model.add(Dense( 10 , activation = 'softmax' )) model. compile (loss = 'categorical_crossentropy' , optimizer = "Nadam" , metrics = [ 'accuracy' ]) print (model.summary()) datagen = ImageDataGenerator(rescale = 1. / 255 ) train_generator = datagen.flow_from_directory( train_dir, target_size = (img_width, img_height), batch_size = batch_size, class_mode = 'categorical' ) val_generator = datagen.flow_from_directory( val_dir, target_size = (img_width, img_height), batch_size = batch_size, class_mode = 'categorical' ) test_generator = datagen.flow_from_directory( test_dir, target_size = (img_width, img_height), batch_size = batch_size, class_mode = 'categorical' ) model.fit_generator( train_generator, steps_per_epoch = nb_train_samples / / batch_size, epochs = epochs, validation_data = val_generator, validation_steps = nb_validation_samples / / batch_size) print ( 'Сохраняем сеть' ) model.save( "grib.h5" ) print ( "Сохранение завершено!" ) |
模型载入
1
2
3
4
5
6
7
8
9
|
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense from keras.models import load_model print ( "Загрузка сети" ) model = load_model( "grib.h5" ) print ( "Загрузка завершена!" ) |
报错
/usr/bin/python3.5 /home/disk2/py/neroset/do.py
/home/mama/.local/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
Using TensorFlow backend.
Загрузка сети
Traceback (most recent call last):
File "/home/disk2/py/neroset/do.py", line 13, in <module>
model = load_model("grib.h5")
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 243, in load_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 317, in model_from_config
return layer_module.deserialize(config, custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 144, in deserialize_keras_object
list(custom_objects.items())))
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 1350, in from_config
model.add(layer)
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 492, in add
output_tensor = layer(self.outputs[0])
File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 590, in __call__
self.build(input_shapes[0])
File "/usr/local/lib/python3.5/dist-packages/keras/layers/normalization.py", line 92, in build
dim = input_shape[self.axis]
TypeError: tuple indices must be integers or slices, not list
Process finished with exit code 1
战斗种族解释
убераю BatchNormalization всё работает хорошо. Не подскажите в чём ошибка?Выяснил что сохранение keras и нормализация tensorflow не работают вместе нужно просто изменить строку импорта.(译文:整理BatchNormalization一切正常。 不要告诉我错误是什么?我发现保存keras和规范化tensorflow不能一起工作;只需更改导入字符串即可。)
强调文本 强调文本
1
2
3
4
|
keras.preprocessing.image import ImageDataGenerator keras.models import Sequential keras.layers import Conv2D, MaxPooling2D, BatchNormalization keras.layers import Activation, Dropout, Flatten, Dense |
##完美解决
##附上原文链接
https://qa-help.ru/questions/keras-batchnormalization
补充:keras和tensorflow模型同时读取要慎重
项目中,先读取了一个keras模型获取模型输入size,再加载keras转tensorflow后的pb模型进行预测。
报错:
Attempting to use uninitialized value batch_normalization_14/moving_mean
逛论坛,有建议加上初始化:
1
|
sess.run(tf.global_variables_initializer()) |
但是这样的话,会导致模型参数全部变成初始化数据。无法使用预测模型参数。
最后发现,将keras模型的加载去掉即可。
猜测原因:keras模型和tensorflow模型同时读取有坑
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
import cv2 import numpy as np from keras.models import load_model from utils.datasets import get_labels from utils.preprocessor import preprocess_input import time import os import tensorflow as tf from tensorflow.python.platform import gfile os.environ[ "CUDA_VISIBLE_DEVICES" ] = "-1" emotion_labels = get_labels( 'fer2013' ) emotion_target_size = ( 64 , 64 ) #emotion_model_path = './models/emotion_model.hdf5' #emotion_classifier = load_model(emotion_model_path) #emotion_target_size = emotion_classifier.input_shape[1:3] path = '/mnt/nas/cv_data/emotion/test' filelist = os.listdir(path) total_num = len (filelist) timeall = 0 n = 0 sess = tf.Session() #sess.run(tf.global_variables_initializer()) with gfile.FastGFile( "./trans_model/emotion_mode.pb" , 'rb' ) as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) sess.graph.as_default() tf.import_graph_def(graph_def, name = '') pred = sess.graph.get_tensor_by_name( "predictions/Softmax:0" ) ######################img########################## for item in filelist: if (item = = '.DS_Store' ) | (item = = 'Thumbs.db' ): continue src = os.path.join(os.path.abspath(path), item) bgr_image = cv2.imread(src) gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY) gray_face = gray_image try : gray_face = cv2.resize(gray_face, (emotion_target_size)) except : continue gray_face = preprocess_input(gray_face, True ) gray_face = np.expand_dims(gray_face, 0 ) gray_face = np.expand_dims(gray_face, - 1 ) input = sess.graph.get_tensor_by_name( 'input_1:0' ) res = sess.run(pred, { input : gray_face}) print ( "src:" , src) emotion_probability = np. max (res[ 0 ]) emotion_label_arg = np.argmax(res[ 0 ]) emotion_text = emotion_labels[emotion_label_arg] print ( "predict:" , res[ 0 ], ",prob:" , emotion_probability, ",label:" , emotion_label_arg, ",text:" ,emotion_text) |
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/u011557212/article/details/87880937