服务器之家

服务器之家 > 正文

python 如何通过KNN来填充缺失值

时间:2021-11-09 10:46     来源/作者:六mo神剑

看代码吧~

# 加载库
import numpy as np
from fancyimpute import KNN
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_blobs
# 创建模拟特征矩阵
features, _ = make_blobs(n_samples = 1000,
                         n_features = 2,
                         random_state = 1)
# 标准化特征
scaler = StandardScaler()
standardized_features = scaler.fit_transform(features)
standardized_features
# 制造缺失值
true_value = standardized_features[0,0]
standardized_features[0,0] = np.nan
standardized_features
# 预测
features_knn_imputed = KNN(k=5, verbose=0).fit_transform(standardized_features)
# features_knn_imputed = KNN(k=5, verbose=0).complete(standardized_features)
features_knn_imputed
# #对比真实值和预测值
print("真实值:", true_value)
print("预测值:", features_knn_imputed[0,0])
# 加载库
import numpy as np
from fancyimpute import KNN
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_blobs
​
# 创建模拟特征矩阵
features, _ = make_blobs(n_samples = 1000,
                         n_features = 2,
                         random_state = 1)​
# 标准化特征
scaler = StandardScaler()
standardized_features = scaler.fit_transform(features)
standardized_features
# 制造缺失值
true_value = standardized_features[0,0]
standardized_features[0,0] = np.nan
standardized_features
# 预测
features_knn_imputed = KNN(k=5, verbose=0).fit_transform(standardized_features)
# features_knn_imputed = KNN(k=5, verbose=0).complete(standardized_features)
features_knn_imputed
# #对比真实值和预测值
print("真实值:", true_value)
print("预测值:", features_knn_imputed[0,0])
真实值: 0.8730186113995938
预测值: 1.0955332713113226

补充:scikit-learn中一种便捷可靠的缺失值填充方法:KNNImputer

在数据挖掘工作中,处理样本中的缺失值是必不可少的一步。其中对于缺失值插补方法的选择至关重要,因为它会对最后模型拟合的效果产生重要影响。

在2019年底,scikit-learn发布了0.22版本,此次版本除了修复之前的一些bug外,还更新了很多新功能,对于数据挖掘人员来说更加好用了。其中我发现了一个新增的非常好用的缺失值插补方法:KNNImputer。这个基于KNN算法的新方法使得我们现在可以更便捷地处理缺失值,并且与直接用均值、中位数相比更为可靠。利用“近朱者赤”的KNN算法原理,这种插补方法借助其他特征的分布来对目标特征进行缺失值填充。

下面,就让我们用实际例子来看看KNNImputer是如何使用的吧‎

使用KNNImputer需要从scikit-learn中导入:

from sklearn.impute import KNNImputer

先来一个小例子开开胃,data中第二个样本存在缺失值。

data = [[2, 4, 8], [3, np.nan, 7], [5, 8, 3], [4, 3, 8]]

KNNImputer中的超参数与KNN算法一样,n_neighbors为选择“邻居”样本的个数,先试试n_neighbors=1。

imputer = KNNImputer(n_neighbors=1)
imputer.fit_transform(data)

python 如何通过KNN来填充缺失值

可以看到,因为第二个样本的第一列特征3和第三列特征7,与第一行样本的第一列特征2和第三列特征8的欧氏距离最近,所以缺失值按照第一个样本来填充,填充值为4。那么n_neighbors=2呢?

imputer = KNNImputer(n_neighbors=2)
imputer.fit_transform(data)

python 如何通过KNN来填充缺失值

此时根据欧氏距离算出最近相邻的是第一行样本与第四行样本,此时的填充值就是这两个样本第二列特征4和3的均值:3.5。

接下来让我们看一个实际案例,该数据集来自Kaggle皮马人糖尿病预测的分类赛题,其中有不少缺失值,我们试试用KNNImputer进行插补。

import numpy as np
import pandas as pd
import pandas_profiling as pp
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(context="notebook", style="darkgrid")
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
 
from sklearn.impute import KNNImputer
#Loading the dataset
diabetes_data = pd.read_csv("pima-indians-diabetes.csv")
diabetes_data.columns = ["Pregnancies", "Glucose", "BloodPressure", "SkinThickness", 
                       "Insulin", "BMI", "DiabetesPedigreeFunction", "Age", "Outcome"]
diabetes_data.head()

python 如何通过KNN来填充缺失值

在这个数据集中,0值代表的就是缺失值,所以我们需要先将0转化为nan值然后进行缺失值处理。

diabetes_data_copy = diabetes_data.copy(deep=True)
diabetes_data_copy[["Glucose","BloodPressure","SkinThickness","Insulin","BMI"]] = diabetes_data_copy[["Glucose","BloodPressure","SkinThickness","Insulin","BMI"]].replace(0, np.NaN)
 
print(diabetes_data_copy.isnull().sum())

python 如何通过KNN来填充缺失值

在本文中,我们尝试用DiabetesPedigreeFunction与Age,对BloodPressure中的35个缺失值进行KNNImputer插补。

先来看一下缺失值都在哪几个样本:

null_index = diabetes_data_copy.loc[diabetes_data_copy["BloodPressure"].isnull(), :].index
null_index

python 如何通过KNN来填充缺失值

imputer = KNNImputer(n_neighbors=10)
diabetes_data_copy[["BloodPressure", "DiabetesPedigreeFunction", "Age"]] = imputer.fit_transform(diabetes_data_copy[["BloodPressure", "DiabetesPedigreeFunction", "Age"]])
print(diabetes_data_copy.isnull().sum())

python 如何通过KNN来填充缺失值

可以看到现在BloodPressure中的35个缺失值消失了。我们看看具体填充后的数据(只截图了部分):

diabetes_data_copy.iloc[null_index]

python 如何通过KNN来填充缺失值

到此,BloodPressure中的缺失值已经根据DiabetesPedigreeFunction与Age运用KNNImputer填充完成了。注意的是,对于非数值型特征需要先转换为数值型特征再进行KNNImputer填充操作,因为目前KNNImputer方法只支持数值型特征(ʘ̆ωʘ̥̆‖)՞。

原文链接:https://blog.csdn.net/wj1298250240/article/details/103600075

标签:

相关文章

热门资讯

yue是什么意思 网络流行语yue了是什么梗
yue是什么意思 网络流行语yue了是什么梗 2020-10-11
2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全
2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全 2019-12-26
背刺什么意思 网络词语背刺是什么梗
背刺什么意思 网络词语背刺是什么梗 2020-05-22
2021年耽改剧名单 2021要播出的59部耽改剧列表
2021年耽改剧名单 2021要播出的59部耽改剧列表 2021-03-05
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总 2020-11-13
返回顶部