方法1 自带
1
2
|
total = sum ([param.nelement() for param in model.parameters()]) print ( "Number of parameter: %.2fM" % (total / 1e6 )) |
或者
1
2
|
total = sum (p.numel() for p in model.parameters()) print ( "Total params: %.2fM" % (total / 1e6 )) |
方法2 编写代码
计算模型参数总量和模型计算量
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
|
def count_params(model, input_size = 224 ): # param_sum = 0 with open ( 'models.txt' , 'w' ) as fm: fm.write( str (model)) # 计算模型的计算量 calc_flops(model, input_size) # 计算模型的参数总量 model_parameters = filter ( lambda p: p.requires_grad, model.parameters()) params = sum ([np.prod(p.size()) for p in model_parameters]) print ( 'The network has {} params.' . format (params)) # 计算模型的计算量 def calc_flops(model, input_size): def conv_hook( self , input , output): batch_size, input_channels, input_height, input_width = input [ 0 ].size() output_channels, output_height, output_width = output[ 0 ].size() kernel_ops = self .kernel_size[ 0 ] * self .kernel_size[ 1 ] * ( self .in_channels / self .groups) * ( 2 if multiply_adds else 1 ) bias_ops = 1 if self .bias is not None else 0 params = output_channels * (kernel_ops + bias_ops) flops = batch_size * params * output_height * output_width list_conv.append(flops) def linear_hook( self , input , output): batch_size = input [ 0 ].size( 0 ) if input [ 0 ].dim() = = 2 else 1 weight_ops = self .weight.nelement() * ( 2 if multiply_adds else 1 ) bias_ops = self .bias.nelement() flops = batch_size * (weight_ops + bias_ops) list_linear.append(flops) def bn_hook( self , input , output): list_bn.append( input [ 0 ].nelement()) def relu_hook( self , input , output): list_relu.append( input [ 0 ].nelement()) def pooling_hook( self , input , output): batch_size, input_channels, input_height, input_width = input [ 0 ].size() output_channels, output_height, output_width = output[ 0 ].size() kernel_ops = self .kernel_size * self .kernel_size bias_ops = 0 params = output_channels * (kernel_ops + bias_ops) flops = batch_size * params * output_height * output_width list_pooling.append(flops) def foo(net): childrens = list (net.children()) if not childrens: if isinstance (net, torch.nn.Conv2d): net.register_forward_hook(conv_hook) if isinstance (net, torch.nn.Linear): net.register_forward_hook(linear_hook) if isinstance (net, torch.nn.BatchNorm2d): net.register_forward_hook(bn_hook) if isinstance (net, torch.nn.ReLU): net.register_forward_hook(relu_hook) if isinstance (net, torch.nn.MaxPool2d) or isinstance (net, torch.nn.AvgPool2d): net.register_forward_hook(pooling_hook) return for c in childrens: foo(c) multiply_adds = False list_conv, list_bn, list_relu, list_linear, list_pooling = [], [], [], [], [] foo(model) if '0.4.' in torch.__version__: if assets.USE_GPU: input = torch.cuda.FloatTensor(torch.rand( 2 , 3 , input_size, input_size).cuda()) else : input = torch.FloatTensor(torch.rand( 2 , 3 , input_size, input_size)) else : input = Variable(torch.rand( 2 , 3 , input_size, input_size), requires_grad = True ) _ = model( input ) total_flops = ( sum (list_conv) + sum (list_linear) + sum (list_bn) + sum (list_relu) + sum (list_pooling)) print ( ' + Number of FLOPs: %.2fM' % (total_flops / 1e6 / 2 )) |
方法3 thop
需要安装thop
1
|
pip install thop |
调用方法:计算模型参数总量和模型计算量,而且会打印每一层网络的具体信息
1
2
3
4
5
|
from thop import profile input = torch.randn( 1 , 3 , 224 , 224 ) flops, params = profile(model, inputs = ( input ,)) print (flops) print (params) |
或者
1
2
3
4
5
6
7
8
9
10
|
from torchvision.models import resnet50 from thop import profile # model = resnet50() checkpoints = '模型path' model = torch.load(checkpoints) model_name = 'yolov3 cut asff' input = torch.randn( 1 , 3 , 224 , 224 ) flops, params = profile(model, inputs = ( input , ),verbose = True ) print ( "%s | %.2f | %.2f" % (model_name, params / ( 1000 * * 2 ), flops / ( 1000 * * 3 ))) #这里除以1000的平方,是为了化成M的单位, |
注意:输入必须是四维的
提高输出可读性, 加入一下代码。
1
2
|
from thop import clever_format macs, params = clever_format([flops, params], "%.3f" ) |
方法4 torchstat
1
2
3
4
5
|
from torchstat import stat from torchvision.models import resnet50, resnet101, resnet152, resnext101_32x8d model = resnet50() stat(model, ( 3 , 224 , 224 )) # (3,224,224)表示输入图片的尺寸 |
使用torchstat这个库来查看网络模型的一些信息,包括总的参数量params、MAdd、显卡内存占用量和FLOPs等。需要安装torchstat:
1
|
pip install torchstat |
方法5 ptflops
作用:计算模型参数总量和模型计算量
安装方法:pip install ptflops
或者
1
|
pip install - - upgrade git + https: / / github.com / sovrasov / flops - counter.pytorch.git |
使用方法
1
2
3
4
5
6
7
8
|
import torchvision.models as models import torch from ptflops import get_model_complexity_info with torch.cuda.device( 0 ): net = models.resnet18() flops, params = get_model_complexity_info(net, ( 3 , 224 , 224 ), as_strings = True , print_per_layer_stat = True ) #不用写batch_size大小,默认batch_size=1 print ( 'Flops: ' + flops) print ( 'Params: ' + params) |
或者
1
2
3
4
5
6
7
8
9
10
11
12
|
from torchvision.models import resnet50 import torch import torchvision.models as models # import torch from ptflops import get_model_complexity_info # model = models.resnet50() #调用官方的模型, checkpoints = '自己模型的path' model = torch.load(checkpoints) model_name = 'yolov3 cut' flops, params = get_model_complexity_info(model, ( 3 , 320 , 320 ),as_strings = True ,print_per_layer_stat = True ) print ( "%s |%s |%s" % (model_name,flops,params)) |
注意,这里输入一定是要tuple类型,且不需要输入batch,直接输入输入通道数量与尺寸,如(3,320,320) 320为网络输入尺寸。
输出为网络模型的总参数量(单位M,即百万)与计算量(单位G,即十亿)
方法6 torchsummary
安装:pip install torchsummary
使用方法:
1
2
3
|
from torchsummary import summary ... summary(your_model, input_size = (channels, H, W)) |
作用:
1、每一层的类型、shape 和 参数量
2、模型整体的参数量
3、模型大小,和 fp/bp 一次需要的内存大小,可以用来估计最佳 batch_size
补充:pytorch计算模型算力与参数大小
ptflops介绍
这个脚本设计用于计算卷积神经网络中乘法-加法操作的理论数量。它还可以计算参数的数量和打印给定网络的每层计算成本。
支持layer:Conv1d/2d/3d,ConvTranspose2d,BatchNorm1d/2d/3d,激活(ReLU, PReLU, ELU, ReLU6, LeakyReLU),Linear,Upsample,Poolings (AvgPool1d/2d/3d、MaxPool1d/2d/3d、adaptive ones)
安装要求:Pytorch >= 0.4.1, torchvision >= 0.2.1
get_model_complexity_info()
get_model_complexity_info是ptflops下的一个方法,可以计算出网络的算力与模型参数大小,并且可以输出每层的算力消耗。
栗子
以输出Mobilenet_v2算力信息为例:
1
2
3
4
|
from ptflops import get_model_complexity_info from torchvision import models net = models.mobilenet_v2() ops, params = get_model_complexity_info(net, ( 3 , 224 , 224 ), as_strings = True , print_per_layer_stat = True , verbose = True ) |
从图中可以看到,MobileNetV2在输入图像尺寸为(3, 224, 224)的情况下将会产生3.505MB的参数,算力消耗为0.32G,同时还打印出了每个层所占用的算力,权重参数数量。当然,整个模型的算力大小与模型大小也被存到了变量ops与params中。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_35407318/article/details/109359006