服务器之家

服务器之家 > 正文

基于CentOS的Hadoop分布式环境的搭建开发

时间:2021-11-30 16:00     来源/作者:亮仔亮仔我爱你哟

首先,要说明的一点的是,我不想重复发明轮子。如果想要搭建hadoop环境,网上有很多详细的步骤和命令代码,我不想再重复记录。

其次,我要说的是我也是新手,对于hadoop也不是很熟悉。但是就是想实际搭建好环境,看看他的庐山真面目,还好,还好,最好看到了。当运行wordcount词频统计的时候,实在是感叹hadoop已经把分布式做的如此之好,即使没有分布式相关经验的人,也只需要做一些配置即可运行分布式集群环境。

好了,言归真传。

在搭建hadoop环境中你要知道的一些事儿:

1.hadoop运行于linux系统之上,你要安装linux操作系统

2.你需要搭建一个运行hadoop的集群,例如局域网内能互相访问的linux系统

3.为了实现集群之间的相互访问,你需要做到ssh无密钥登录

4.hadoop的运行在jvm上的,也就是说你需要安装java的jdk,并配置好java_home

5.hadoop的各个组件是通过xml来配置的。在官网上下载好hadoop之后解压缩,修改/etc/hadoop目录中相应的配置文件

工欲善其事,必先利其器。这里也要说一下,在搭建hadoop环境中使用到的相关软件和工具:

1.virtualbox——毕竟要模拟几台linux,条件有限,就在virtualbox中创建几台虚拟机楼

2.centos——下载的centos7的iso镜像,加载到virtualbox中,安装运行

3.securecrt——可以ssh远程访问linux的软件

4.winscp——实现windows和linux的通信

5.jdk for linux——oracle官网上下载,解压缩之后配置一下即可

6.hadoop2.7.1——可在apache官网上下载

好了,下面分三个步骤来讲解

linux环境准备

 配置ip

为了实现本机和虚拟机以及虚拟机和虚拟机之间的通信,virtualbox中设置centos的连接模式为host-only模式,并且手动设置ip,注意虚拟机的网关和本机中host-only network 的ip地址相同。配置ip完成后还要重启网络服务以使得配置有效。这里搭建了三台linux,如下图所示

基于CentOS的Hadoop分布式环境的搭建开发

基于CentOS的Hadoop分布式环境的搭建开发

基于CentOS的Hadoop分布式环境的搭建开发

基于CentOS的Hadoop分布式环境的搭建开发

配置主机名字

对于192.168.56.101设置主机名字hadoop01。并在hosts文件中配置集群的ip和主机名。其余两个主机的操作与此类似

?
1
2
3
4
5
6
7
8
9
10
[root@hadoop01 ~]# cat /etc/sysconfig/network
# created by anaconda
networking = yes
hostname = hadoop01  
[root@hadoop01 ~]# cat /etc/hosts
127.0.0.1  localhost localhost.localdomain localhost4 localhost4.localdomain4
::1     localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.56.101 hadoop01
192.168.56.102 hadoop02
192.168.56.103 hadoop03

永久关闭防火墙

service iptables stop(1.下次重启机器后,防火墙又会启动,故需要永久关闭防火墙的命令;2由于用的是centos 7,关闭防火墙的命令如下)

?
1
2
systemctl stop firewalld.service    #停止firewall
systemctl disable firewalld.service #禁止firewall开机启动

关闭selinux防护系统

改为disabled 。reboot重启机器,使配置生效

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
[root@hadoop02 ~]# cat /etc/sysconfig/selinux
 
# this file controls the state of selinux on the system
# selinux= can take one of these three values:
#   enforcing - selinux security policy is enforced
 
#   permissive - selinux prints warnings instead of enforcing
#   disabled - no selinux policy is loaded
selinux=disabled
# selinuxtype= can take one of three two values:
#   targeted - targeted processes are protected,
#   minimum - modification of targeted policy only selected processes are protected
#   mls - multi level security protection
selinuxtype=targeted

集群ssh免密码登录

首先设置ssh密钥

?
1
ssh-keygen -t rsa

拷贝ssh密钥到三台机器

?
1
2
ssh-copy-id 192.168.56.101
<pre name="code" class="plain">ssh-copy-id 192.168.56.102
?
1
ssh-copy-id 192.168.56.103

这样如果hadoop01的机器想要登录hadoop02,直接输入ssh hadoop02

?
1
<pre name="code" class="plain">ssh hadoop02

配置jdk

这里在/home忠诚创建三个文件夹中

tools——存放工具包

softwares——存放软件

data——存放数据

通过winscp将下载好的linux jdk上传到hadoop01的/home/tools中

解压缩jdk到softwares中

?
1
<pre name="code" class="plain">tar -zxf jdk-7u76-linux-x64.tar.gz -c /home/softwares

可见jdk的家目录在/home/softwares/jdk.x.x.x,将该目录拷贝粘贴到/etc/profile文件中,并且在文件中设置java_home

?
1
2
export java_home=/home/softwares/jdk0_111
export path=$path:$java_home/bin

保存修改,执行source /etc/profile使配置生效

查看java jdk是否安装成功:

?
1
java -version

可以将当前节点中设置的文件拷贝到其他节点

?
1
scp -r /home/* root@192.168.56.10x:/home

hadoop集群安装

集群的规划如下:

101节点作为hdfs的namenode ,其余作为datanode;102作为yarn的resourcemanager,其余作为nodemanager。103作为secondarynamenode。分别在101和102节点启动jobhistoryserver和webappproxyserver基于CentOS的Hadoop分布式环境的搭建开发

下载hadoop-2.7.3

并将其放在/home/softwares文件夹中。由于hadoop需要jdk的安装环境,所以首先配置/etc/hadoop/hadoop-env.sh的java_home

(ps:感觉我用的jdk版本过高了)基于CentOS的Hadoop分布式环境的搭建开发

接下来依次修改hadoop相应组件对应的xml

修改core-site.xml :

指定namenode地址

修改hadoop的缓存目录

hadoop的垃圾回收机制

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
<configuration>
  <property>
    <name>fsdefaultfs</name>
    <value>hdfs://101:8020</value>
  </property>
  <property>
    <name>hadooptmpdir</name>
    <value>/home/softwares/hadoop-3/data/tmp</value>
  </property>
  <property>
    <name>fstrashinterval</name>
    <value>10080</value>
  </property>
   
</configuration>

hdfs-site.xml

设置备份数目

关闭权限

设置http访问接口

设置secondary namenode 的ip地址

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
<configuration>
  <property>
    <name>dfsreplication</name>
    <value>3</value>
  </property>
  <property>
    <name>dfspermissionsenabled</name>
    <value>false</value>
  </property>
  <property>
    <name>dfsnamenodehttp-address</name>
    <value>101:50070</value>
  </property>
  <property>
    <name>dfsnamenodesecondaryhttp-address</name>
    <value>103:50090</value>
  </property>
</configuration>

 修改mapred-site.xml.template名字为mapred-site.xml

指定mapreduce的框架为yarn,通过yarn来调度

指定jobhitory

指定jobhitory的web端口

开启uber模式——这是针对mapreduce的优化

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
<configuration>
  <property>
    <name>mapreduceframeworkname</name>
    <value>yarn</value>
  </property>
  <property>
    <name>mapreducejobhistoryaddress</name>
    <value>101:10020</value>
  </property>
  <property>
    <name>mapreducejobhistorywebappaddress</name>
    <value>101:19888</value>
  </property>
  <property>
    <name>mapreducejobubertaskenable</name>
    <value>true</value>
  </property>
</configuration>

修改yarn-site.xml

指定mapreduce为shuffle

指定102节点为resourcemanager

指定102节点的安全代理

开启yarn的日志

指定yarn日志删除时间

指定nodemanager的内存:8g

指定nodemanager的cpu:8核

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
<configuration>
 
<!-- site specific yarn configuration properties -->
  <property>
    <name>yarnnodemanageraux-services</name>
    <value>mapreduce_shuffle</value>
  </property>
  <property>
    <name>yarnresourcemanagerhostname</name>
    <value>102</value>
  </property>
  <property>
    <name>yarnweb-proxyaddress</name>
    <value>102:8888</value>
  </property>
  <property>
    <name>yarnlog-aggregation-enable</name>
    <value>true</value>
  </property>
  <property>
    <name>yarnlog-aggregationretain-seconds</name>
    <value>604800</value>
  </property>
  <property>
    <name>yarnnodemanagerresourcememory-mb</name>
    <value>8192</value>
  </property>
  <property>
    <name>yarnnodemanagerresourcecpu-vcores</name>
    <value>8</value>
  </property>
 
</configuration>

配置slaves

指定计算节点,即运行datanode和nodemanager的节点

192.168.56.101 
192.168.56.102 
192.168.56.103 

先在namenode节点格式化,即101节点上执行:

进入到hadoop主目录: cd /home/softwares/hadoop-3  

执行bin目录下的hadoop脚本: bin/hadoop namenode -format 

出现successful format才算是执行成功(ps,这里是盗用别人的图,不要介意哈) 基于CentOS的Hadoop分布式环境的搭建开发

 以上配置完成后,将其拷贝到其他的机器

hadoop环境测试

进入hadoop主目录下执行相应的脚本文件

jps命令——java virtual machine process status,显示运行的java进程

在namenode节点101机器上开启hdfs

?
1
2
3
4
5
6
7
8
9
10
11
[root@hadoop01 hadoop-3]# sbin/start-dfssh 
java hotspot(tm) client vm warning: you have loaded library /home/softwares/hadoop-3/lib/native/libhadoopso which might have disabled stack guard the vm will try to fix the stack guard now
it's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'
16/11/07 16:49:19 warn utilnativecodeloader: unable to load native-hadoop library for your platform using builtin-java classes where applicable
starting namenodes on [hadoop01]
hadoop01: starting namenode, logging to /home/softwares/hadoop-3/logs/hadoop-root-namenode-hadoopout
102: starting datanode, logging to /home/softwares/hadoop-3/logs/hadoop-root-datanode-hadoopout
103: starting datanode, logging to /home/softwares/hadoop-3/logs/hadoop-root-datanode-hadoopout
101: starting datanode, logging to /home/softwares/hadoop-3/logs/hadoop-root-datanode-hadoopout
starting secondary namenodes [hadoop03]
hadoop03: starting secondarynamenode, logging to /home/softwares/hadoop-3/logs/hadoop-root-secondarynamenode-hadoopout

此时101节点上执行jps,可以看到namenode和datanode已经启动

?
1
2
3
4
[root@hadoop01 hadoop-3]# jps
7826 jps
7270 datanode
7052 namenode

在102和103节点执行jps,则可以看到datanode已经启动

?
1
2
3
4
5
6
7
8
[root@hadoop02 bin]# jps
4260 datanode
4488 jps
 
[root@hadoop03 ~]# jps
6436 secondarynamenode
6750 jps
6191 datanode

启动yarn

在102节点执行

?
1
2
3
4
5
6
[root@hadoop02 hadoop-3]# sbin/start-yarnsh 
starting yarn daemons
starting resourcemanager, logging to /home/softwares/hadoop-3/logs/yarn-root-resourcemanager-hadoopout
101: starting nodemanager, logging to /home/softwares/hadoop-3/logs/yarn-root-nodemanager-hadoopout
103: starting nodemanager, logging to /home/softwares/hadoop-3/logs/yarn-root-nodemanager-hadoopout
102: starting nodemanager, logging to /home/softwares/hadoop-3/logs/yarn-root-nodemanager-hadoopout

jps查看各节点:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
[root@hadoop02 hadoop-3]# jps
4641 resourcemanager
4260 datanode
4765 nodemanager
5165 jps
 
 
[root@hadoop01 hadoop-3]# jps
7270 datanode
8375 jps
7976 nodemanager
7052 namenode
 
 
[root@hadoop03 ~]# jps
6915 nodemanager
6436 secondarynamenode
7287 jps
6191 datanode

分别启动相应节点的jobhistory和防护进程

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
[root@hadoop01 hadoop-3]# sbin/mr-jobhistory-daemonsh start historyserver
starting historyserver, logging to /home/softwares/hadoop-3/logs/mapred-root-historyserver-hadoopout
[root@hadoop01 hadoop-3]# jps
8624 jps
7270 datanode
7976 nodemanager
8553 jobhistoryserver
7052 namenode
 
[root@hadoop02 hadoop-3]# sbin/yarn-daemonsh start proxyserver
starting proxyserver, logging to /home/softwares/hadoop-3/logs/yarn-root-proxyserver-hadoopout
[root@hadoop02 hadoop-3]# jps
4641 resourcemanager
4260 datanode
5367 webappproxyserver
5402 jps
4765 nodemanager

在hadoop01节点,即101节点上,通过浏览器查看节点状况 基于CentOS的Hadoop分布式环境的搭建开发基于CentOS的Hadoop分布式环境的搭建开发

hdfs上传文件

?
1
[root@hadoop01 hadoop-3]# bin/hdfs dfs -put /etc/profile /profile

运行wordcount程序

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
[root@hadoop01 hadoop-3]# bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-jar wordcount /profile /fll_out
java hotspot(tm) client vm warning: you have loaded library /home/softwares/hadoop-3/lib/native/libhadoopso which might have disabled stack guard the vm will try to fix the stack guard now
it's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'
16/11/07 17:17:10 warn utilnativecodeloader: unable to load native-hadoop library for your platform using builtin-java classes where applicable
16/11/07 17:17:12 info clientrmproxy: connecting to resourcemanager at /102:8032
16/11/07 17:17:18 info inputfileinputformat: total input paths to process : 1
16/11/07 17:17:19 info mapreducejobsubmitter: number of splits:1
16/11/07 17:17:19 info mapreducejobsubmitter: submitting tokens for job: job_1478509135878_0001
16/11/07 17:17:20 info implyarnclientimpl: submitted application application_1478509135878_0001
16/11/07 17:17:20 info mapreducejob: the url to track the job: http://102:8888/proxy/application_1478509135878_0001/
16/11/07 17:17:20 info mapreducejob: running job: job_1478509135878_0001
16/11/07 17:18:34 info mapreducejob: job job_1478509135878_0001 running in uber mode : true
16/11/07 17:18:35 info mapreducejob: map 0% reduce 0%
16/11/07 17:18:43 info mapreducejob: map 100% reduce 0%
16/11/07 17:18:50 info mapreducejob: map 100% reduce 100%
16/11/07 17:18:55 info mapreducejob: job job_1478509135878_0001 completed successfully
16/11/07 17:18:59 info mapreducejob: counters: 52
    file system counters
        file: number of bytes read=4264
        file: number of bytes written=6412
        file: number of read operations=0
        file: number of large read operations=0
        file: number of write operations=0
        hdfs: number of bytes read=3940
        hdfs: number of bytes written=261673
        hdfs: number of read operations=35
        hdfs: number of large read operations=0
        hdfs: number of write operations=8
    job counters 
        launched map tasks=1
        launched reduce tasks=1
        other local map tasks=1
        total time spent by all maps in occupied slots (ms)=8246
        total time spent by all reduces in occupied slots (ms)=7538
        total_launched_ubertasks=2
        num_uber_submaps=1
        num_uber_subreduces=1
        total time spent by all map tasks (ms)=8246
        total time spent by all reduce tasks (ms)=7538
        total vcore-milliseconds taken by all map tasks=8246
        total vcore-milliseconds taken by all reduce tasks=7538
        total megabyte-milliseconds taken by all map tasks=8443904
        total megabyte-milliseconds taken by all reduce tasks=7718912
    map-reduce framework
        map input records=78
        map output records=256
        map output bytes=2605
        map output materialized bytes=2116
        input split bytes=99
        combine input records=256
        combine output records=156
        reduce input groups=156
        reduce shuffle bytes=2116
        reduce input records=156
        reduce output records=156
        spilled records=312
        shuffled maps =1
        failed shuffles=0
        merged map outputs=1
        gc time elapsed (ms)=870
        cpu time spent (ms)=1970
        physical memory (bytes) snapshot=243326976
        virtual memory (bytes) snapshot=2666557440
        total committed heap usage (bytes)=256876544
    shuffle errors
        bad_id=0
        connection=0
        io_error=0
        wrong_length=0
        wrong_map=0
        wrong_reduce=0
    file input format counters 
        bytes read=1829
    file output format counters 
        bytes written=1487

浏览器中通过yarn查看运行状态 基于CentOS的Hadoop分布式环境的搭建开发

查看最后的词频统计结果

浏览器中查看hdfs的文件系统基于CentOS的Hadoop分布式环境的搭建开发

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
[root@hadoop01 hadoop-3]# bin/hdfs dfs -cat /fll_out/part-r-00000
java hotspot(tm) client vm warning: you have loaded library /home/softwares/hadoop-3/lib/native/libhadoopso which might have disabled stack guard the vm will try to fix the stack guard now
it's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'
16/11/07 17:29:17 warn utilnativecodeloader: unable to load native-hadoop library for your platform using builtin-java classes where applicable
!=   1
"$-"  1
"$2"  1
"$euid" 2
"$histcontrol" 1
"$i"  3
"${-#*i}"    1
"0"   1
":${path}:"   1
"`id  2
"after" 1
"ignorespace"  1
#    13
$uid  1
&&   1
()   1
*)   1
*:"$1":*)    1
-f   1
-gn`"  1
-gt   1
-r   1
-ru`  1
-u`   1
-un`"  2
-x   1
-z   1
    2
/etc/bashrc   1
/etc/profile  1
/etc/profiled/ 1
/etc/profiled/*sh   1
/usr/bin/id   1
/usr/local/sbin 2
/usr/sbin    2
/usr/share/doc/setup-*/uidgid  1
002   1
022   1
199   1
200   1
2>/dev/null`  1
;    3
;;   1
=    4
>/dev/null   1
by   1
current 1
euid=`id    1
functions    1
histcontrol   1
histcontrol=ignoreboth 1
histcontrol=ignoredups 1
histsize    1
histsize=1000  1
hostname    1
hostname=`/usr/bin/hostname   1
it's  2
java_home=/home/softwares/jdk0_111 1
logname 1
logname=$user  1
mail  1
mail="/var/spool/mail/$user"  1
not   1
path  1
path=$1:$path  1
path=$path:$1  1
path=$path:$java_home/bin    1
path  1
system 1
this  1
uid=`id 1
user  1
user="`id    1
you   1
[    9
]    3
];   6
a    2
after  2
aliases 1
and   2
are   1
as   1
better 1
case  1
change 1
changes 1
check  1
could  1
create 1
custom 1
customsh    1
default,    1
do   1
doing 1
done  1
else  5
environment   1
environment,  1
esac  1
export 5
fi   8
file  2
for   5
future 1
get   1
go   1
good  1
i    2
idea  1
if   8
in   6
is   1
it   1
know  1
ksh   1
login  2
make  1
manipulation  1
merging 1
much  1
need  1
pathmunge    6
prevent 1
programs,    1
reservation   1
reserved    1
script 1
set  1
sets  1
setup  1
shell  2
startup 1
system 1
the   1
then  8
this  2
threshold    1
to   5
uid/gids    1
uidgid 1
umask  3
unless 1
unset  2
updates    1
validity    1
want  1
we   1
what  1
wide  1
will  1
workaround   1
you   2
your  1
{    1
}    1

这就代表hadoop集群正确

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:http://blog.csdn.net/fffllllll/article/details/53066073

标签:

相关文章

热门资讯

yue是什么意思 网络流行语yue了是什么梗
yue是什么意思 网络流行语yue了是什么梗 2020-10-11
背刺什么意思 网络词语背刺是什么梗
背刺什么意思 网络词语背刺是什么梗 2020-05-22
2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全
2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全 2019-12-26
2021年耽改剧名单 2021要播出的59部耽改剧列表
2021年耽改剧名单 2021要播出的59部耽改剧列表 2021-03-05
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总 2020-11-13
返回顶部