1 Pytorch以ONNX方式保存模型
1
2
3
4
5
6
7
8
9
10
|
def saveONNX(model, filepath): ''' 保存ONNX模型 :param model: 神经网络模型 :param filepath: 文件保存路径 ''' # 神经网络输入数据类型 dummy_input = torch.randn( self .config.BATCH_SIZE, 1 , 28 , 28 , device = 'cuda' ) torch.onnx.export(model, dummy_input, filepath, verbose = True ) |
2 利用TensorRT5中ONNX解析器构建Engine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
def ONNX_build_engine(onnx_file_path): ''' 通过加载onnx文件,构建engine :param onnx_file_path: onnx文件路径 :return: engine ''' # 打印日志 G_LOGGER = trt.Logger(trt.Logger.WARNING) with trt.Builder(G_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, G_LOGGER) as parser: builder.max_batch_size = 100 builder.max_workspace_size = 1 << 20 print ( 'Loading ONNX file from path {}...' . format (onnx_file_path)) with open (onnx_file_path, 'rb' ) as model: print ( 'Beginning ONNX file parsing' ) parser.parse(model.read()) print ( 'Completed parsing of ONNX file' ) print ( 'Building an engine from file {}; this may take a while...' . format (onnx_file_path)) engine = builder.build_cuda_engine(network) print ( "Completed creating Engine" ) # 保存计划文件 # with open(engine_file_path, "wb") as f: # f.write(engine.serialize()) return engine |
3 构建TensorRT运行引擎进行预测
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
def loadONNX2TensorRT(filepath): ''' 通过onnx文件,构建TensorRT运行引擎 :param filepath: onnx文件路径 ''' # 计算开始时间 Start = time() engine = self .ONNX_build_engine(filepath) # 读取测试集 datas = DataLoaders() test_loader = datas.testDataLoader() img, target = next ( iter (test_loader)) img = img.numpy() target = target.numpy() img = img.ravel() context = engine.create_execution_context() output = np.empty(( 100 , 10 ), dtype = np.float32) # 分配内存 d_input = cuda.mem_alloc( 1 * img.size * img.dtype.itemsize) d_output = cuda.mem_alloc( 1 * output.size * output.dtype.itemsize) bindings = [ int (d_input), int (d_output)] # pycuda操作缓冲区 stream = cuda.Stream() # 将输入数据放入device cuda.memcpy_htod_async(d_input, img, stream) # 执行模型 context.execute_async( 100 , bindings, stream.handle, None ) # 将预测结果从从缓冲区取出 cuda.memcpy_dtoh_async(output, d_output, stream) # 线程同步 stream.synchronize() print ( "Test Case: " + str (target)) print ( "Prediction: " + str (np.argmax(output, axis = 1 ))) print ( "tensorrt time:" , time() - Start) del context del engine |
补充知识:Pytorch/Caffe可以先转换为ONNX,再转换为TensorRT
近来工作,试图把Pytorch用TensorRT运行。折腾了半天,没有完成。github中的转换代码,只能处理pytorch 0.2.0的功能(也明确表示不维护了)。和同事一起处理了很多例外,还是没有通过。吾以为,实际上即使勉强过了,能不能跑也是问题。
后来有高手建议,先转换为ONNX,再转换为TensorRT。这个思路基本可行。
是不是这样就万事大吉?当然不是,还是有严重问题要解决的。这只是个思路。
以上这篇Pytorch通过保存为ONNX模型转TensorRT5的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_38003892/article/details/89314108