本文实例为大家分享了python自动计算图像数据集的RGB均值,供大家参考,具体内容如下
图像数据集往往要进行去均值,以保证更快的收敛。
代码:
创建一个mean.py,写入如下代码。修改路径即可使用
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
''' qhy 2018.12.3 ''' import os import numpy as np import cv2 ims_path = 'C:/Users/my/Desktop/JPEGImages/' # 图像数据集的路径 ims_list = os.listdir(ims_path) R_means = [] G_means = [] B_means = [] for im_list in ims_list: im = cv2.imread(ims_path + im_list) #extrect value of diffient channel im_R = im[:,:, 0 ] im_G = im[:,:, 1 ] im_B = im[:,:, 2 ] #count mean for every channel im_R_mean = np.mean(im_R) im_G_mean = np.mean(im_G) im_B_mean = np.mean(im_B) #save single mean value to a set of means R_means.append(im_R_mean) G_means.append(im_G_mean) B_means.append(im_B_mean) print ( '图片:{} 的 RGB平均值为 \n[{},{},{}]' . format (im_list,im_R_mean,im_G_mean,im_B_mean) ) #three sets into a large set a = [R_means,G_means,B_means] mean = [ 0 , 0 , 0 ] #count the sum of different channel means mean[ 0 ] = np.mean(a[ 0 ]) mean[ 1 ] = np.mean(a[ 1 ]) mean[ 2 ] = np.mean(a[ 2 ]) print ( '数据集的BGR平均值为\n[{},{},{}]' . format ( mean[ 0 ],mean[ 1 ],mean[ 2 ]) ) #cv.imread()读取Img时候将rgb转换为了bgr,谢谢taylover-pei的修正。 |
终端运行: python mean.py
结果示例如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/gusui7202/article/details/84751598