本文实例为大家分享了Opencv Python实现两幅图像匹配的具体代码,供大家参考,具体内容如下
原图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
import cv2 img1 = cv2.imread( 'SURF_2.jpg' , cv2.IMREAD_GRAYSCALE) img1 = cv2.resize(img1,dsize = ( 600 , 400 )) img2 = cv2.imread( 'SURF_1.jpg' , cv2.IMREAD_GRAYSCALE) img2 = cv2.resize(img2,dsize = ( 600 , 400 )) image1 = img1.copy() image2 = img2.copy() #创建一个SURF对象 surf = cv2.xfeatures2d.SURF_create( 25000 ) #SIFT对象会使用Hessian算法检测关键点,并且对每个关键点周围的区域计算特征向量。该函数返回关键点的信息和描述符 keypoints1,descriptor1 = surf.detectAndCompute(image1, None ) keypoints2,descriptor2 = surf.detectAndCompute(image2, None ) # print('descriptor1:',descriptor1.shape(),'descriptor2',descriptor2.shape()) #在图像上绘制关键点 image1 = cv2.drawKeypoints(image = image1,keypoints = keypoints1,outImage = image1,color = ( 255 , 0 , 255 ),flags = cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) image2 = cv2.drawKeypoints(image = image2,keypoints = keypoints2,outImage = image2,color = ( 255 , 0 , 255 ),flags = cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) #显示图像 cv2.imshow( 'surf_keypoints1' ,image1) cv2.imshow( 'surf_keypoints2' ,image2) cv2.waitKey( 20 ) matcher = cv2.FlannBasedMatcher() matchePoints = matcher.match(descriptor1,descriptor2) # print(type(matchePoints),len(matchePoints),matchePoints[0]) #提取强匹配特征点 minMatch = 1 maxMatch = 0 for i in range ( len (matchePoints)): if minMatch > matchePoints[i].distance: minMatch = matchePoints[i].distance if maxMatch < matchePoints[i].distance: maxMatch = matchePoints[i].distance print ( '最佳匹配值是:' ,minMatch) print ( '最差匹配值是:' ,maxMatch) #获取排雷在前边的几个最优匹配结果 goodMatchePoints = [] for i in range ( len (matchePoints)): if matchePoints[i].distance < minMatch + (maxMatch - minMatch) / 16 : goodMatchePoints.append(matchePoints[i]) #绘制最优匹配点 outImg = None outImg = cv2.drawMatches(img1,keypoints1,img2,keypoints2,goodMatchePoints,outImg, matchColor = ( 0 , 255 , 0 ),flags = cv2.DRAW_MATCHES_FLAGS_DEFAULT) cv2.imshow( 'matche' ,outImg) cv2.waitKey( 0 ) cv2.destroyAllWindows() |
原图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
#coding=utf-8 import cv2 from matplotlib import pyplot as plt img = cv2.imread( 'xfeatures2d.SURF_create2.jpg' , 0 ) # surf=cv2.SURF(400) #Hessian阈值400 # kp,des=surf.detectAndCompute(img,None) # leng=len(kp) # print(leng) # 关键点太多,重取阈值 surf = cv2.cv2.xfeatures2d.SURF_create( 50000 ) #Hessian阈值50000 kp,des = surf.detectAndCompute(img, None ) leng = len (kp) print (leng) img2 = cv2.drawKeypoints(img,kp, None ,( 255 , 0 , 0 ), 4 ) plt.imshow(img2) plt.show() # 下面是U-SURF算法,关键点朝向一致,运算速度加快。 surf.upright = True kp = surf.detect(img, None ) img3 = cv2.drawKeypoints(img,kp, None ,( 255 , 0 , 0 ), 4 ) plt.imshow(img3) plt.show() #检测关键点描述符大小,改64维成128维 surf.extended = True kp,des = surf.detectAndCompute(img, None ) dem1 = surf.descriptorSize() print (dem1) shp1 = des.shape() print (shp1) |
效果图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
import cv2 from matplotlib import pyplot as plt leftImage = cv2.imread( 'xfeatures2d.SURF_create_1.jpg' ) rightImage = cv2.imread( 'xfeatures2d.SURF_create_2.jpg' ) # 创造sift sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(leftImage, None ) kp2, des2 = sift.detectAndCompute(rightImage, None ) # 返回关键点信息和描述符 FLANN_INDEX_KDTREE = 0 indexParams = dict (algorithm = FLANN_INDEX_KDTREE, trees = 5 ) searchParams = dict (checks = 50 ) # 指定索引树要被遍历的次数 flann = cv2.FlannBasedMatcher(indexParams, searchParams) matches = flann.knnMatch(des1, des2, k = 2 ) matchesMask = [[ 0 , 0 ] for i in range ( len (matches))] print ( "matches" , matches[ 0 ]) for i, (m, n) in enumerate (matches): if m.distance < 0.07 * n.distance: matchesMask[i] = [ 1 , 0 ] drawParams = dict (matchColor = ( 0 , 255 , 0 ), singlePointColor = None , matchesMask = matchesMask, flags = 2 ) # flag=2只画出匹配点,flag=0把所有的点都画出 resultImage = cv2.drawMatchesKnn(leftImage, kp1, rightImage, kp2, matches, None , * * drawParams) plt.imshow(resultImage) plt.show() |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/Scarlett2025/article/details/117964983