1、背景
为什么需要降维呢?
因为数据个数 N 和每个数据的维度 p 不满足 N >> p,造成了模型结果的“过拟合”。有两种方法解决上述问题:
增加N;减小p。
这里我们讲解的 PCA 属于方法2。
2、样本均值和样本方差矩阵
3、PCA
3.1 最大投影方差
3.2 最小重构距离
4、Python实现
""" -*- coding: utf-8 -*- @ Time : 2021/8/15 22:19 @ Author : Raymond @ Email : wanght2316@163.com @ Editor : Pycharm """ from sklearn.datasets import load_digits from sklearn.decomposition import PCA import pandas as pd import matplotlib.pyplot as plt digits = load_digits() print(digits.keys()) print("数据的形状为: {}".format(digits["data"].shape)) # 构建模型 - 降到10 d pca = PCA(n_components=10) pca.fit(digits.data) projected=pca.fit_transform(digits.data) print("降维后主成分的方差值为:",pca.explained_variance_) print("降维后主成分的方差值占总方差的比例为:",pca.explained_variance_ratio_) print("降维后最大方差的成分为:",pca.components_) print("降维后主成分的个数为:",pca.n_components_) print("original shape:",digits.data.shape) print("transformed shape:",projected.shape) s = pca.explained_variance_ c_s = pd.DataFrame({"b": s,"b_sum": s.cumsum() / s.sum()}) c_s["b_sum"].plot(style= "--ko",figsize= (10, 4)) plt.rcParams["font.sans-serif"] = ["SimHei"] # 指定默认字体 plt.rcParams["axes.unicode_minus"] = False # 解决保存图像是负号"-"显示为方块的问题 plt.axhline(0.85, color= "r",linestyle= "--") plt.text(6, c_s["b_sum"].iloc[6]-0.08, "第7个成分累计贡献率超过85%", color="b") plt.title("PCA 各成分累计占比") plt.grid() plt.savefig("./PCA.jpg") plt.show()
结果展示:
总结
本篇文章就到这里了,希望能给你带来帮助,也希望您能够多多关注服务器之家的更多内容!
原文链接:https://blog.csdn.net/Ray_mond_/article/details/119722214