矩阵是其中元素以二维矩形布局布置的R对象。 它们包含相同原子类型的元素。 虽然我们可以创建一个只包含字符或只包含逻辑值的矩阵,但它们没有太多用处。 我们使用包含数字元素的矩阵用于数学计算。
使用matrix()函数创建一个矩阵。
语法
在R语言中创建矩阵的基本语法是
1
|
matrix(data, nrow, ncol, byrow, dimnames) |
以下是所使用的参数的说明
- 数据是成为矩阵的数据元素的输入向量。
- nrow是要创建的行数。
- ncol是要创建的列数。
- byrow是一个逻辑线索。 如果为TRUE,则输入向量元素按行排列。
- dimname是分配给行和列的名称。
例
创建一个以数字向量作为输入的矩阵
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
# Elements are arranged sequentially by row. M <- matrix(c(3:14), nrow = 4, byrow = TRUE) print(M) # Elements are arranged sequentially by column. N <- matrix(c(3:14), nrow = 4, byrow = FALSE) print(N) # Define the column and row names. rownames = c( "row1" , "row2" , "row3" , "row4" ) colnames = c( "col1" , "col2" , "col3" ) P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames)) print(P) |
当我们执行上面的代码,它产生以下结果 -
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
[,1] [,2] [,3] [1,] 3 4 5 [2,] 6 7 8 [3,] 9 10 11 [4,] 12 13 14 [,1] [,2] [,3] [1,] 3 7 11 [2,] 4 8 12 [3,] 5 9 13 [4,] 6 10 14 col1 col2 col3 row1 3 4 5 row2 6 7 8 row3 9 10 11 row4 12 13 14 |
访问矩阵的元素
可以通过使用元素的列和行索引来访问矩阵的元素。 我们考虑上面的矩阵P找到下面的具体元素。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
# Define the column and row names. rownames = c( "row1" , "row2" , "row3" , "row4" ) colnames = c( "col1" , "col2" , "col3" ) # Create the matrix. P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames)) # Access the element at 3rd column and 1st row. print(P[1,3]) # Access the element at 2nd column and 4th row. print(P[4,2]) # Access only the 2nd row. print(P[2,]) # Access only the 3rd column. print(P[,3]) |
当我们执行上面的代码,它产生以下结果 -
1
2
3
4
5
6
|
[1] 5 [1] 13 col1 col2 col3 6 7 8 row1 row2 row3 row4 5 8 11 14 |
矩阵计算
使用R运算符对矩阵执行各种数学运算。 操作的结果也是一个矩阵。
对于操作中涉及的矩阵,维度(行数和列数)应该相同。
矩阵加法和减法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
# Create two 2x3 matrices. matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2) print(matrix1) matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2) print(matrix2) # Add the matrices. result <- matrix1 + matrix2 cat ( "Result of addition" ," ") print(result) # Subtract the matrices result <- matrix1 - matrix2 cat ( "Result of subtraction" ," ") print(result) |
当我们执行上面的代码,它产生以下结果 -
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
[,1] [,2] [,3] [1,] 3 -1 2 [2,] 9 4 6 [,1] [,2] [,3] [1,] 5 0 3 [2,] 2 9 4 Result of addition [,1] [,2] [,3] [1,] 8 -1 5 [2,] 11 13 10 Result of subtraction [,1] [,2] [,3] [1,] -2 -1 -1 [2,] 7 -5 2 |
矩阵乘法和除法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
# Create two 2x3 matrices. matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow = 2) print(matrix1) matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow = 2) print(matrix2) # Multiply the matrices. result <- matrix1 * matrix2 cat ( "Result of multiplication" ," ") print(result) # Divide the matrices result <- matrix1 / matrix2 cat ( "Result of division" ," ") print(result) |
当我们执行上面的代码,它产生以下结果 -
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
[,1] [,2] [,3] [1,] 3 -1 2 [2,] 9 4 6 [,1] [,2] [,3] [1,] 5 0 3 [2,] 2 9 4 Result of multiplication [,1] [,2] [,3] [1,] 15 0 6 [2,] 18 36 24 Result of division [,1] [,2] [,3] [1,] 0.6 -Inf 0.6666667 [2,] 4.5 0.4444444 1.5000000 |
以上就是R语言矩阵知识点总结及实例分析的详细内容,更多关于R语言矩阵的资料请关注服务器之家其它相关文章!
原文链接:https://www.w3cschool.cn/r/r_matrices.html