记得收藏呀!!!
1、第三方库导入
from bs4 import BeautifulSoup # 解析网页 import re # 正则表达式,进行文字匹配 import urllib.request,urllib.error # 通过浏览器请求数据 import sqlite3 # 轻型数据库 import time # 获取当前时间
2、程序运行主函数
爬取过程主要包括声明爬取网页 -> 爬取网页数据并解析 -> 保存数据
def main(): #声明爬取网站 baseurl = "https://www.bilibili.com/v/popular/rank/all" #爬取网页 datalist = getData(baseurl) # print(datalist) #保存数据 dbname = time.strftime("%Y-%m-%d", time.localtime()) dbpath = "BiliBiliTop100 " + dbname saveData(datalist,dbpath)
(1)在爬取的过程中采用的技术为:伪装成浏览器对数据进行请求;
(2)解析爬取到的网页源码时:采用Beautifulsoup解析出需要的数据,使用re正则表达式对数据进行匹配;
(3)保存数据时,考虑到B站排行榜是每日进行刷新,故可以用当前日期进行保存数据库命名。
3、程序运行结果
数据库中包含的数据有:排名、视频链接、标题、播放量、评论量、作者、综合分数这7个数据。
4、程序源代码
from bs4 import BeautifulSoup #解析网页 import re # 正则表达式,进行文字匹配 import urllib.request,urllib.error import sqlite3 import time def main(): #声明爬取网站 baseurl = "https://www.bilibili.com/v/popular/rank/all" #爬取网页 datalist = getData(baseurl) # print(datalist) #保存数据 dbname = time.strftime("%Y-%m-%d", time.localtime()) dbpath = "BiliBiliTop100 " + dbname saveData(datalist,dbpath) #re正则表达式 findLink =re.compile(r'<a class="title" href="(.*?)" rel="external nofollow" ') #视频链接 findOrder = re.compile(r'<div class="num">(.*?)</div>') #榜单次序 findTitle = re.compile(r'<a class="title" href=".*?" rel="external nofollow" rel="external nofollow" target="_blank">(.*?)</a>') #视频标题 findPlay = re.compile(r'<span class="data-box"><i class="b-icon play"></i>([\s\S]*)(.*?)</span> <span class="data-box">') #视频播放量 findView = re.compile(r'<span class="data-box"><i class="b-icon view"></i>([\s\S]*)(.*?)</span> <a href=".*?" rel="external nofollow" rel="external nofollow" target="_blank"><span class="data-box up-name">') # 视频评价数 findName = re.compile(r'<i class="b-icon author"></i>(.*?)</span></a>',re.S) #视频作者 findScore = re.compile(r'<div class="pts"><div>(.*?)</div>综合得分',re.S) #视频得分 def getData(baseurl): datalist = [] html = askURL(baseurl) #print(html) soup = BeautifulSoup(html,'html.parser') #解释器 for item in soup.find_all('li',class_="rank-item"): # print(item) data = [] item = str(item) Order = re.findall(findOrder,item)[0] data.append(Order) # print(Order) Link = re.findall(findLink,item)[0] Link = 'https:' + Link data.append(Link) # print(Link) data.append(Title) # print(Title) Play = re.findall(findPlay,item)[0][0] Play = Play.replace(" ","") Play = Play.replace("\n","") Play = Play.replace(".","") Play = Play.replace("万","0000") data.append(Play) # print(Play) View = re.findall(findView,item)[0][0] View = View.replace(" ","") View = View.replace("\n","") View = View.replace(".","") View = View.replace("万","0000") data.append(View) # print(View) Name = re.findall(findName,item)[0] Name = Name.replace(" ","") Name = Name.replace("\n","") data.append(Name) # print(Name) Score = re.findall(findScore,item)[0] data.append(Score) # print(Score) datalist.append(data) return datalist def askURL(url): #设置请求头 head = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0;Win64;x64) AppleWebKit/537.36(KHTML, likeGecko) Chrome/80.0.3987.163Safari/537.36" } request = urllib.request.Request(url, headers = head) html = "" try: response = urllib.request.urlopen(request) html = response.read().decode("utf-8") #print(html) except urllib.error.URLError as e: if hasattr(e,"code"): print(e.code) if hasattr(e,"reason"): print(e.reason) return html def saveData(datalist,dbpath): init_db(dbpath) conn = sqlite3.connect(dbpath) cur = conn.cursor() for data in datalist: sql = ''' insert into Top100( id,info_link,title,play,view,name,score) values("%s","%s","%s","%s","%s","%s","%s")'''%(data[0],data[1],data[2],data[3],data[4],data[5],data[6]) print(sql) cur.execute(sql) conn.commit() cur.close() conn.close() def init_db(dbpath): sql = ''' create table Top100 ( id integer primary key autoincrement, info_link text, title text, play numeric, view numeric, name text, score numeric ) ''' conn = sqlite3.connect(dbpath) cursor = conn.cursor() cursor.execute(sql) conn.commit() conn.close() if __name__ =="__main__": main()
到此这篇关于如何使用python爬取B站排行榜Top100的视频数据的文章就介绍到这了,更多相关python B站视频 内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!
原文链接:https://blog.csdn.net/gets_s/article/details/114788402