常见触发错误的情况
- 如果传入的字段多了会自动过滤
- 如果传入的少了会报错,必填字段
- 如果传入的字段名称对不上也会报错
- 如果传入的类型不对会自动转换
- 如果不能转换则会报错
错误的触发
pydantic 会在它正在验证的数据中发现错误时引发 ValidationError
注意
验证代码不应该抛出 ValidationError 本身
而是应该抛出 ValueError、TypeError、AssertionError 或他们的子类
ValidationError 会包含所有错误及其发生方式的信息
访问错误的方式
e.errors()
:返回输入数据中发现的错误的列表
e.json()
:以 JSON 格式返回错误(推荐)
str(e)
:以人类可读的方式返回错误
简单栗子
1
2
3
4
5
6
7
8
9
10
11
|
# 一定要导入 ValidationError from pydantic import BaseModel, ValidationError class Person(BaseModel): id : int name: str try : # id是个int类型,如果不是int或者不能转换int会报错 p = Person( id = "ss" , name = "hallen" ) except ValidationError as e: # 打印异常消息 print (e.errors()) |
e.errors() 的输出结果
1
|
[{'loc': ('id',), 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}] |
e.json() 的输出结果
1
2
3
4
5
6
7
8
9
|
[ { "loc" : [ "id" ], "msg" : "value is not a valid integer" , "type" : "type_error.integer" } ] |
str(e) 的输出结果
1
2
3
|
1 validation error for Person id value is not a valid integer (type=type_error.integer) |
复杂栗子
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
class Location(BaseModel): lat = 0.1 lng = 10.1 class Model(BaseModel): is_required: float gt_int: conint(gt = 42 ) list_of_ints: List [ int ] = None a_float: float = None recursive_model: Location = None data = dict ( list_of_ints = [ '1' , 2 , 'bad' ], a_float = 'not a float' , recursive_model = { 'lat' : 4.2 , 'lng' : 'New York' }, gt_int = 21 ) try : Model( * * data) except ValidationError as e: print (e.json(indent = 4 )) |
输出结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
[ { "loc": [ "is_required" ], "msg": "field required", "type": "value_error.missing" }, { "loc": [ "gt_int" ], "msg": "ensure this value is greater than 42", "type": "value_error.number.not_gt", "ctx": { "limit_value": 42 } }, { "loc": [ "list_of_ints", 2 ], "msg": "value is not a valid integer", "type": "type_error.integer" }, { "loc": [ "a_float" ], "msg": "value is not a valid float", "type": "type_error.float" }, { "loc": [ "recursive_model", "lng" ], "msg": "value is not a valid float", "type": "type_error.float" } ] |
value_error.missing:必传字段缺失
value_error.number.not_gt:字段值没有大于 42
type_error.integer:字段类型错误,不是 integer
自定义错误
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
# 导入 validator from pydantic import BaseModel, ValidationError, validator class Model(BaseModel): foo: str # 验证器 @validator ( 'foo' ) def name_must_contain_space( cls , v): if v ! = 'bar' : # 自定义错误信息 raise ValueError( 'value must be bar' ) # 返回传进来的值 return v try : Model(foo = "ber" ) except ValidationError as e: print (e.json()) |
输出结果
1
2
3
4
5
6
7
8
9
|
[ { "loc": [ "foo" ], "msg": "value must be bar", "type": "value_error" } ] |
自定义错误模板类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
from pydantic import BaseModel, PydanticValueError, ValidationError, validator class NotABarError(PydanticValueError): code = 'not_a_bar' msg_template = 'value is not "bar", got "{wrong_value}"' class Model(BaseModel): foo: str @validator ( 'foo' ) def name_must_contain_space( cls , v): if v ! = 'bar' : raise NotABarError(wrong_value = v) return v try : Model(foo = 'ber' ) except ValidationError as e: print (e.json()) |
输出结果
1
2
3
4
5
6
7
8
9
10
11
12
|
[ { "loc": [ "foo" ], "msg": "value is not \"bar\", got \"ber\"", "type": "value_error.not_a_bar", "ctx": { "wrong_value": "ber" } } ] |
PydanticValueError
自定义错误类需要继承这个或者 PydanticTypeError
以上就是Python编程pydantic触发及访问错误处理的详细内容,更多关于pydantic触发及访问错误的资料请关注服务器之家其它相关文章!
原文链接:https://blog.csdn.net/qq_33801641/article/details/120320775