1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets( 'data/' , one_hot = True ) print ( "MNIST ready" ) n_input = 784 # 28*28的灰度图,像素个数784 n_output = 10 # 是10分类问题 # 权重项 weights = { # conv1,参数[3, 3, 1, 32]分别指定了filter的h、w、所连接输入的维度、filter的个数即产生特征图个数 'wc1' : tf.Variable(tf.random_normal([ 3 , 3 , 1 , 32 ], stddev = 0.1 )), # conv2,这里参数3,3同上,32是当前连接的深度是32,即前面特征图的个数,64为输出的特征图的个数 'wc2' : tf.Variable(tf.random_normal([ 3 , 3 , 32 , 64 ], stddev = 0.1 )), # fc1,将特征图转换为向量,1024由自己定义 'wd1' : tf.Variable(tf.random_normal([ 7 * 7 * 64 , 1024 ], stddev = 0.1 )), # fc2,做10分类任务,前面连1024,输出10分类 'wd2' : tf.Variable(tf.random_normal([ 1024 , n_output], stddev = 0.1 )) } """ 特征图大小计算: f_w = (w-f+2*pad)/s + 1 = (28-3+2*1)/1 + 1 = 28 # 说明经过卷积层并没有改变图片的大小 f_h = (h-f+2*pad)/s + 1 = (28-3+2*1)/1 + 1 = 28 # 特征图的大小是经过池化层后改变的 第一次pooling后28*28变为14*14 第二次pooling后14*14变为7*7,即最终是一个7*7*64的特征图 """ # 偏置项 biases = { 'bc1' : tf.Variable(tf.random_normal([ 32 ], stddev = 0.1 )), # conv1,对应32个特征图 'bc2' : tf.Variable(tf.random_normal([ 64 ], stddev = 0.1 )), # conv2,对应64个特征图 'bd1' : tf.Variable(tf.random_normal([ 1024 ], stddev = 0.1 )), # fc1,对应1024个向量 'bd2' : tf.Variable(tf.random_normal([n_output], stddev = 0.1 )) # fc2,对应10个输出 } def conv_basic(_input, _w, _b, _keep_prob): # INPUT # 对图像做预处理,转换为tf支持的格式,即[n, h, w, c],-1是确定好其它3维后,让tf去推断剩下的1维 _input_r = tf.reshape(_input, shape = [ - 1 , 28 , 28 , 1 ]) # CONV LAYER 1 _conv1 = tf.nn.conv2d(_input_r, _w[ 'wc1' ], strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' ) # [1, 1, 1, 1]分别代表batch_size、h、w、c的stride # padding有两种选择:'SAME'(窗口滑动时,像素不够会自动补0)或'VALID'(不够就跳过)两种选择 _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b[ 'bc1' ])) # 卷积层后连激活函数 # 最大值池化,[1, 2, 2, 1]其中1,1对应batch_size和channel,2,2对应2*2的池化 _pool1 = tf.nn.max_pool(_conv1, ksize = [ 1 , 2 , 2 , 1 ], strides = [ 1 , 2 , 2 , 1 ], padding = 'SAME' ) # 随机杀死一些神经元,_keepratio为保留神经元比例,如0.6 _pool_dr1 = tf.nn.dropout(_pool1, _keep_prob) # CONV LAYER 2 _conv2 = tf.nn.conv2d(_pool_dr1, _w[ 'wc2' ], strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' ) _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b[ 'bc2' ])) _pool2 = tf.nn.max_pool(_conv2, ksize = [ 1 , 2 , 2 , 1 ], strides = [ 1 , 2 , 2 , 1 ], padding = 'SAME' ) _pool_dr2 = tf.nn.dropout(_pool2, _keep_prob) # dropout # VECTORIZE向量化 # 定义全连接层的输入,把pool2的输出做一个reshape,变为向量的形式 _densel = tf.reshape(_pool_dr2, [ - 1 , _w[ 'wd1' ].get_shape().as_list()[ 0 ]]) # FULLY CONNECTED LAYER 1 _fc1 = tf.nn.relu(tf.add(tf.matmul(_densel, _w[ 'wd1' ]), _b[ 'bd1' ])) # w*x+b,再通过relu _fc_dr1 = tf.nn.dropout(_fc1, _keep_prob) # dropout # FULLY CONNECTED LAYER 2 _out = tf.add(tf.matmul(_fc_dr1, _w[ 'wd2' ]), _b[ 'bd2' ]) # w*x+b,得到结果 # RETURN out = { 'input_r' : _input_r, 'conv1' : _conv1, 'pool1' : _pool1, 'pool_dr1' : _pool_dr1, 'conv2' : _conv2, 'pool2' : _pool2, 'pool_dr2' : _pool_dr2, 'densel' : _densel, 'fc1' : _fc1, 'fc_dr1' : _fc_dr1, 'out' : _out } return out print ( "CNN READY" ) x = tf.placeholder(tf.float32, [ None , n_input]) # 用placeholder先占地方,样本个数不确定为None y = tf.placeholder(tf.float32, [ None , n_output]) # 用placeholder先占地方,样本个数不确定为None keep_prob = tf.placeholder(tf.float32) _pred = conv_basic(x, weights, biases, keep_prob)[ 'out' ] # 前向传播的预测值 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y)) # 交叉熵损失函数 optm = tf.train.AdamOptimizer( 0.001 ).minimize(cost) # 梯度下降优化器 _corr = tf.equal(tf.argmax(_pred, 1 ), tf.argmax(y, 1 )) # 对比预测值索引和实际label索引,相同返回True,不同返回False accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) # 将True或False转换为1或0,并对所有的判断结果求均值 init = tf.global_variables_initializer() print ( "FUNCTIONS READY" ) # 上面神经网络结构定义好之后,下面定义一些超参数 training_epochs = 1000 # 所有样本迭代1000次 batch_size = 100 # 每进行一次迭代选择100个样本 display_step = 1 # LAUNCH THE GRAPH sess = tf.Session() # 定义一个Session sess.run(init) # 在sess里run一下初始化操作 # OPTIMIZE for epoch in range (training_epochs): avg_cost = 0. total_batch = int (mnist.train.num_examples / batch_size) for i in range (total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 逐个batch的去取数据 sess.run(optm, feed_dict = {x: batch_xs, y: batch_ys, keep_prob: 0.5 }) avg_cost + = sess.run(cost, feed_dict = {x: batch_xs, y: batch_ys, keep_prob: 1.0 }) / total_batch if epoch % display_step = = 0 : train_accuracy = sess.run(accr, feed_dict = {x: batch_xs, y: batch_ys, keep_prob: 1.0 }) test_accuracy = sess.run(accr, feed_dict = {x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0 }) print ( "Epoch: %03d/%03d cost: %.9f TRAIN ACCURACY: %.3f TEST ACCURACY: %.3f" % (epoch, training_epochs, avg_cost, train_accuracy, test_accuracy)) print ( "DONE" ) |
我用的显卡是GTX960,在跑这个卷积神经网络的时候,第一次filter分别设的是64和128,结果报蜜汁错误了,反正就是我显存不足,所以改成了32和64,让特征图少一点。所以,是让我换1080的意思喽
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:885] Found device 0 with properties: name: GeForce GTX 960 major: 5 minor: 2 memoryClockRate (GHz) 1.304 pciBusID 0000:01:00.0 Total memory: 4.00GiB Free memory: 3.33GiB I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:906] DMA: 0 I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:916] 0: Y I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 960, pci bus id: 0000:01:00.0) W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 2.59GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available. W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 1.34GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available. W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 2.10GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available. W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 3.90GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available. Epoch: 000/1000 cost: 0.517761162 TRAIN ACCURACY: 0.970 TEST ACCURACY: 0.967 Epoch: 001/1000 cost: 0.093012387 TRAIN ACCURACY: 0.960 TEST ACCURACY: 0.979 . . . 省略 |
以上就是TensorFlow另一种程序风格实现卷积神经网络的详细内容,更多关于TensorFlow卷积神经网络的资料请关注服务器之家其它相关文章!
原文链接:https://blog.csdn.net/lwplwf/article/details/62237000