【人工智能项目】Python Flask搭建yolov3目标检测系统:
后端代码
from flask import Flask, request, jsonify from PIL import Image import numpy as np import base64 import io import os from backend.tf_inference import load_model, inference os.environ['CUDA_VISIBLE_DEVICES'] = '0' sess, detection_graph = load_model() app = Flask(__name__) @app.route('/api/', methods=["POST"]) def main_interface(): response = request.get_json() data_str = response['image'] point = data_str.find(',') base64_str = data_str[point:] # remove unused part like this: "data:image/jpeg;base64," image = base64.b64decode(base64_str) img = Image.open(io.BytesIO(image)) if(img.mode!='RGB'): img = img.convert("RGB") # convert to numpy array. img_arr = np.array(img) # do object detection in inference function. results = inference(sess, detection_graph, img_arr, conf_thresh=0.7) print(results) return jsonify(results) @app.after_request def add_headers(response): response.headers.add('Access-Control-Allow-Origin', '*') response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization') return response if __name__ == '__main__': app.run(debug=True, host='0.0.0.0')
展示部分
python -m http.server
python app.py
前端展示部分
到此这篇关于Python Flask搭建yolov3目标检测系统详解流程的文章就介绍到这了,更多相关Python 目标检测系统内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!
原文链接:https://blog.csdn.net/Mind_programmonkey/article/details/121051114