数据动画可视化制作在日常工作中是非常实用的一项技能。目前支持动画可视化的库主要以Matplotlib-Animation为主,其特点为:配置复杂,保存动图容易报错。
安装方法
1
2
|
pip install pandas_alive # 或者 conda install pandas_alive -c conda-forge |
使用说明
pandas_alive 的设计灵感来自 bar_chart_race,为方便快速进行动画可视化制作,在数据的格式上需要满足如下条件:
- 每行表示单个时间段
- 每列包含特定类别的值
- 索引包含时间组件(可选)
支持示例展示
水平条形图
1
2
3
|
import pandas_alive covid_df = pandas_alive.load_dataset() covid_df.plot_animated(filename = 'examples/perpendicular-example.gif' ,perpendicular_bar_func = 'mean' ) |
垂直条形图比赛
1
2
3
|
import pandas_alive covid_df = pandas_alive.load_dataset() covid_df.plot_animated(filename = 'examples/example-barv-chart.gif' ,orientation = 'v' ) |
条形图
与时间与 x 轴一起显示的折线图类似
1
2
3
4
5
6
|
import pandas_alive covid_df = pandas_alive.load_dataset() covid_df. sum (axis = 1 ).fillna( 0 ).plot_animated(filename = 'examples/example-bar-chart.gif' ,kind = 'bar' , period_label = { 'x' : 0.1 , 'y' : 0.9 }, enable_progress_bar = True , steps_per_period = 2 , interpolate_period = True , period_length = 200 ) |
饼图
1
2
3
|
import pandas_alive covid_df = pandas_alive.load_dataset() covid_df.plot_animated(filename = 'examples/example-pie-chart.gif' ,kind = "pie" ,rotatelabels = True ,period_label = { 'x' : 0 , 'y' : 0 }) |
多边形地理空间图
1
2
3
4
5
6
7
|
import geopandas import pandas_alive import contextily gdf = geopandas.read_file( 'data/italy-covid-region.gpkg' ) gdf.index = gdf.region gdf = gdf.drop( 'region' ,axis = 1 ) map_chart = gdf.plot_animated(filename = 'examples/example-geo-polygon-chart.gif' ,basemap_format = { 'source' :contextily.providers.Stamen.Terrain}) |
多个图表
pandas_alive 支持单个可视化中的多个动画图表。
示例1
1
2
3
4
5
6
7
8
9
10
11
12
|
import pandas_alive urban_df = pandas_alive.load_dataset( "urban_pop" ) animated_line_chart = ( urban_df. sum (axis = 1 ) .pct_change() .fillna(method = 'bfill' ) .mul( 100 ) .plot_animated(kind = "line" , title = "Total % Change in Population" ,period_label = False ,add_legend = False ) ) animated_bar_chart = urban_df.plot_animated(n_visible = 10 ,title = 'Top 10 Populous Countries' ,period_fmt = "%Y" ) pandas_alive.animate_multiple_plots( 'examples/example-bar-and-line-urban-chart.gif' ,[animated_bar_chart,animated_line_chart], title = 'Urban Population 1977 - 2018' , adjust_subplot_top = 0.85 , enable_progress_bar = True ) |
示例2
1
2
3
4
5
6
|
import pandas_alive covid_df = pandas_alive.load_dataset() animated_line_chart = covid_df.diff().fillna( 0 ).plot_animated(kind = 'line' ,period_label = False ,add_legend = False ) animated_bar_chart = covid_df.plot_animated(n_visible = 10 ) pandas_alive.animate_multiple_plots( 'examples/example-bar-and-line-chart.gif' ,[animated_bar_chart,animated_line_chart], enable_progress_bar = True ) |
示例3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
import pandas_alive import pandas as pd data_raw = pd.read_csv( "https://raw.githubusercontent.com/owid/owid-datasets/master/datasets/Long%20run%20life%20expectancy%20-%20Gapminder%2C%20UN/Long%20run%20life%20expectancy%20-%20Gapminder%2C%20UN.csv" ) list_G7 = [ "Canada" , "France" , "Germany" , "Italy" , "Japan" , "United Kingdom" , "United States" , ] data_raw = data_raw.pivot( index = "Year" , columns = "Entity" , values = "Life expectancy (Gapminder, UN)" ) data = pd.DataFrame() data[ "Year" ] = data_raw.reset_index()[ "Year" ] for country in list_G7: data[country] = data_raw[country].values data = data.fillna(method = "pad" ) data = data.fillna( 0 ) data = data.set_index( "Year" ).loc[ 1900 :].reset_index() data[ "Year" ] = pd.to_datetime(data.reset_index()[ "Year" ].astype( str )) data = data.set_index( "Year" ) animated_bar_chart = data.plot_animated( period_fmt = "%Y" ,perpendicular_bar_func = "mean" , period_length = 200 ,fixed_max = True ) animated_line_chart = data.plot_animated( kind = "line" , period_fmt = "%Y" , period_length = 200 ,fixed_max = True ) pandas_alive.animate_multiple_plots( "examples/life-expectancy.gif" , plots = [animated_bar_chart, animated_line_chart], title = "Life expectancy in G7 countries up to 2015" , adjust_subplot_left = 0.2 , adjust_subplot_top = 0.9 , enable_progress_bar = True ) |
示例4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
|
import geopandas import pandas as pd import pandas_alive import contextily import matplotlib.pyplot as plt import urllib.request, json with urllib.request.urlopen( "https://data.nsw.gov.au/data/api/3/action/package_show?id=aefcde60-3b0c-4bc0-9af1-6fe652944ec2" ) as url: data = json.loads(url.read().decode()) # Extract url to csv component covid_nsw_data_url = data[ "result" ][ "resources" ][ 0 ][ "url" ] # Read csv from data API url nsw_covid = pd.read_csv(covid_nsw_data_url) postcode_dataset = pd.read_csv( "data/postcode-data.csv" ) # Prepare data from NSW health dataset nsw_covid = nsw_covid.fillna( 9999 ) nsw_covid[ "postcode" ] = nsw_covid[ "postcode" ].astype( int ) grouped_df = nsw_covid.groupby([ "notification_date" , "postcode" ]).size() grouped_df = pd.DataFrame(grouped_df).unstack() grouped_df.columns = grouped_df.columns.droplevel().astype( str ) grouped_df = grouped_df.fillna( 0 ) grouped_df.index = pd.to_datetime(grouped_df.index) cases_df = grouped_df # Clean data in postcode dataset prior to matching grouped_df = grouped_df.T postcode_dataset = postcode_dataset[postcode_dataset[ 'Longitude' ].notna()] postcode_dataset = postcode_dataset[postcode_dataset[ 'Longitude' ] ! = 0 ] postcode_dataset = postcode_dataset[postcode_dataset[ 'Latitude' ].notna()] postcode_dataset = postcode_dataset[postcode_dataset[ 'Latitude' ] ! = 0 ] postcode_dataset[ 'Postcode' ] = postcode_dataset[ 'Postcode' ].astype( str ) # Build GeoDataFrame from Lat Long dataset and make map chart grouped_df[ 'Longitude' ] = grouped_df.index. map (postcode_dataset.set_index( 'Postcode' )[ 'Longitude' ].to_dict()) grouped_df[ 'Latitude' ] = grouped_df.index. map (postcode_dataset.set_index( 'Postcode' )[ 'Latitude' ].to_dict()) gdf = geopandas.GeoDataFrame( grouped_df, geometry = geopandas.points_from_xy(grouped_df.Longitude, grouped_df.Latitude),crs = "EPSG:4326" ) gdf = gdf.dropna() # Prepare GeoDataFrame for writing to geopackage gdf = gdf.drop([ 'Longitude' , 'Latitude' ],axis = 1 ) gdf.columns = gdf.columns.astype( str ) gdf[ 'postcode' ] = gdf.index gdf.to_file( "data/nsw-covid19-cases-by-postcode.gpkg" , layer = 'nsw-postcode-covid' , driver = "GPKG" ) # Prepare GeoDataFrame for plotting gdf.index = gdf.postcode gdf = gdf.drop( 'postcode' ,axis = 1 ) gdf = gdf.to_crs( "EPSG:3857" ) #Web Mercator map_chart = gdf.plot_animated(basemap_format = { 'source' :contextily.providers.Stamen.Terrain},cmap = 'cool' ) cases_df.to_csv( 'data/nsw-covid-cases-by-postcode.csv' ) from datetime import datetime bar_chart = cases_df. sum (axis = 1 ).plot_animated( kind = 'line' , label_events = { 'Ruby Princess Disembark' :datetime.strptime( "19/03/2020" , "%d/%m/%Y" ), 'Lockdown' :datetime.strptime( "31/03/2020" , "%d/%m/%Y" ) }, fill_under_line_color = "blue" , add_legend = False ) map_chart.ax.set_title( 'Cases by Location' ) grouped_df = pd.read_csv( 'data/nsw-covid-cases-by-postcode.csv' , index_col = 0 , parse_dates = [ 0 ]) line_chart = ( grouped_df. sum (axis = 1 ) .cumsum() .fillna( 0 ) .plot_animated(kind = "line" , period_label = False , title = "Cumulative Total Cases" , add_legend = False ) ) def current_total(values): total = values. sum () s = f 'Total : {int(total)}' return { 'x' : . 85 , 'y' : . 2 , 's' : s, 'ha' : 'right' , 'size' : 11 } race_chart = grouped_df.cumsum().plot_animated( n_visible = 5 , title = "Cases by Postcode" , period_label = False ,period_summary_func = current_total ) import time timestr = time.strftime( "%d/%m/%Y" ) plots = [bar_chart, line_chart, map_chart, race_chart] from matplotlib import rcParams rcParams.update({ "figure.autolayout" : False }) # make sure figures are `Figure()` instances figs = plt.Figure() gs = figs.add_gridspec( 2 , 3 , hspace = 0.5 ) f3_ax1 = figs.add_subplot(gs[ 0 , :]) f3_ax1.set_title(bar_chart.title) bar_chart.ax = f3_ax1 f3_ax2 = figs.add_subplot(gs[ 1 , 0 ]) f3_ax2.set_title(line_chart.title) line_chart.ax = f3_ax2 f3_ax3 = figs.add_subplot(gs[ 1 , 1 ]) f3_ax3.set_title(map_chart.title) map_chart.ax = f3_ax3 f3_ax4 = figs.add_subplot(gs[ 1 , 2 ]) f3_ax4.set_title(race_chart.title) race_chart.ax = f3_ax4 timestr = cases_df.index. max ().strftime( "%d/%m/%Y" ) figs.suptitle(f "NSW COVID-19 Confirmed Cases up to {timestr}" ) pandas_alive.animate_multiple_plots( 'examples/nsw-covid.gif' , plots, figs, enable_progress_bar = True ) |
总结
Pandas_Alive 是一款非常好玩、实用的动画可视化制图工具,以上就是python机器学习使数据更鲜活的可视化工具Pandas_Alive的详细内容,更多关于python机器学习可视化工具Pandas_Alive的资料请关注服务器之家其它相关文章!
原文链接:https://blog.csdn.net/weixin_38037405/article/details/109426609