前言
本文做的是基于三层神经网络实现手写数字分类,神经网络设计是设计复杂深度学习算法应用的基础,本文将介绍如何设计一个三层神经网络模型来实现手写数字分类。首先介绍如何利用高级编程语言Python搭建神经网络训练和推断框架来实现手写数字分类的训练和使用。
一、神经网络组成
一个完整的神经网络通常由多个基本的网络层堆叠而成。本实验中的三层全连接神经网络由三个全连接层构成,在每两个全连接层之间会插入ReLU激活函数引入非线性变换,最后使用Softmax层计算交叉嫡损失,如下图所示。因此本实验中使用的基本单元包括全连接层、ReLU激活函数、Softmax损失函数。
二、代码实现
1.引入库
import numpy as np import struct import os
2.导入数据集
MNIST_DIR = "mnist_data" TRAIN_DATA = "train-images-idx3-ubyte" TRAIN_LABEL = "train-labels-idx1-ubyte" TEST_DATA = "t10k-images-idx3-ubyte" TEST_LABEL = "t10k-labels-idx1-ubyte"
数据集链接
数据集下载后一定记得解压
3.全连接层
class FullyConnectedLayer(object): def __init__(self, num_input, num_output): # 全连接层初始化 self.num_input = num_input self.num_output = num_output def init_param(self, std=0.01): # 参数初始化 self.weight = np.random.normal(loc=0, scale=std, size=(self.num_input, self.num_output)) self.bias = np.zeros([1, self.num_output]) def forward(self, input): # 前向传播计算 self.input = input self.output = np.dot(self.input,self.weight)+self.bias return self.output def backward(self, top_diff): # 反向传播的计算 self.d_weight =np.dot(self.input.T,top_diff) self.d_bias = top_diff # bottom_diff = np.dot(top_diff,self.weight.T) return bottom_diff def update_param(self, lr): # 参数更新 self.weight = self.weight - lr * self.d_weight self.bias = self.bias - lr * self.d_bias def load_param(self, weight, bias): # 参数加载 assert self.weight.shape == weight.shape assert self.bias.shape == bias.shape self.weight = weight self.bias = bias def save_param(self): # 参数保存 return self.weight, self.bias
4.ReLU激活函数层
class ReLULayer(object): def forward(self, input): # 前向传播的计算 self.input = input output = np.maximum(self.input,0) return output def backward(self, top_diff): # 反向传播的计算 b = self.input b[b>0] =1 b[b<0] = 0 bottom_diff = np.multiply(b,top_diff) return bottom_diff
5.Softmax损失层
class SoftmaxLossLayer(object): def forward(self, input): # 前向传播的计算 input_max = np.max(input, axis=1, keepdims=True) input_exp = np.exp(input- input_max)#(64,10) partsum = np.sum(input_exp,axis=1) sum = np.tile(partsum,(10,1)) self.prob = input_exp / sum.T return self.prob def get_loss(self, label): # 计算损失 self.batch_size = self.prob.shape[0] self.label_onehot = np.zeros_like(self.prob) self.label_onehot[np.arange(self.batch_size), label] = 1.0 loss = -np.sum(self.label_onehot*np.log(self.prob)) / self.batch_size return loss def backward(self): # 反向传播的计算 bottom_diff = (self.prob - self.label_onehot)/self.batch_size return bottom_diff
6.网络训练与推断模块
class MNIST_MLP(object): def __init__(self, batch_size=64, input_size=784, hidden1=32, hidden2=16, out_classes=10, lr=0.01, max_epoch=1,print_iter=100): self.batch_size = batch_size self.input_size = input_size self.hidden1 = hidden1 self.hidden2 = hidden2 self.out_classes = out_classes self.lr = lr self.max_epoch = max_epoch self.print_iter = print_iter def shuffle_data(self): np.random.shuffle(self.train_data) def build_model(self): # 建立网络结构 self.fc1 = FullyConnectedLayer(self.input_size, self.hidden1) self.relu1 = ReLULayer() self.fc2 = FullyConnectedLayer(self.hidden1, self.hidden2) self.relu2 = ReLULayer() self.fc3 = FullyConnectedLayer(self.hidden2, self.out_classes) self.softmax = SoftmaxLossLayer() self.update_layer_list = [self.fc1, self.fc2, self.fc3] def init_model(self): for layer in self.update_layer_list: layer.init_param() def forward(self, input): # 神经网络的前向传播 h1 = self.fc1.forward(input) h1 = self.relu1.forward(h1) h2 = self.fc2.forward(h1) h2 = self.relu2.forward(h2) h3 = self.fc3.forward(h2) self.prob = self.softmax.forward(h3) return self.prob def backward(self): # 神经网络的反向传播 dloss = self.softmax.backward() dh2 = self.fc3.backward(dloss) dh2 = self.relu2.backward(dh2) dh1 = self.fc2.backward(dh2) dh1 = self.relu1.backward(dh1) dh1 = self.fc1.backward(dh1) def update(self, lr): for layer in self.update_layer_list: layer.update_param(lr) def load_mnist(self, file_dir, is_images='True'): bin_file = open(file_dir, 'rb') bin_data = bin_file.read() bin_file.close() if is_images: fmt_header = '>iiii' magic, num_images, num_rows, num_cols = struct.unpack_from(fmt_header, bin_data, 0) else: fmt_header = '>ii' magic, num_images = struct.unpack_from(fmt_header, bin_data, 0) num_rows, num_cols = 1, 1 data_size = num_images * num_rows * num_cols mat_data = struct.unpack_from('>' + str(data_size) + 'B', bin_data, struct.calcsize(fmt_header)) mat_data = np.reshape(mat_data, [num_images, num_rows * num_cols]) return mat_data def load_data(self): train_images = self.load_mnist(os.path.join(MNIST_DIR, TRAIN_DATA), True) train_labels = self.load_mnist(os.path.join(MNIST_DIR, TRAIN_LABEL), False) test_images = self.load_mnist(os.path.join(MNIST_DIR, TEST_DATA), True) test_labels = self.load_mnist(os.path.join(MNIST_DIR, TEST_LABEL), False) self.train_data = np.append(train_images, train_labels, axis=1) self.test_data = np.append(test_images, test_labels, axis=1) def load_model(self, param_dir): params = np.load(param_dir).item() self.fc1.load_param(params['w1'], params['b1']) self.fc2.load_param(params['w2'], params['b2']) self.fc3.load_param(params['w3'], params['b3']) def save_model(self, param_dir): params = {} params['w1'], params['b1'] = self.fc1.save_param() params['w2'], params['b2'] = self.fc2.save_param() params['w3'], params['b3'] = self.fc3.save_param() np.save(param_dir, params) def train(self): max_batch_1 = self.train_data.shape[0] / self.batch_size max_batch = int(max_batch_1) for idx_epoch in range(self.max_epoch): mlp.shuffle_data() for idx_batch in range(max_batch): batch_images = self.train_data[idx_batch * self.batch_size:(idx_batch + 1) * self.batch_size, :-1] batch_labels = self.train_data[idx_batch * self.batch_size:(idx_batch + 1) * self.batch_size, -1] prob = self.forward(batch_images) loss = self.softmax.get_loss(batch_labels) self.backward() self.update(self.lr) if idx_batch % self.print_iter == 0: print('Epoch %d, iter %d, loss: %.6f' % (idx_epoch, idx_batch, loss)) def evaluate(self): pred_results = np.zeros([self.test_data.shape[0]]) for idx in range(int(self.test_data.shape[0] / self.batch_size)): batch_images = self.test_data[idx * self.batch_size:(idx + 1) * self.batch_size, :-1] prob = self.forward(batch_images) pred_labels = np.argmax(prob, axis=1) pred_results[idx * self.batch_size:(idx + 1) * self.batch_size] = pred_labels accuracy = np.mean(pred_results == self.test_data[:, -1]) print('Accuracy in test set: %f' % accuracy)
7.完整流程
if __name__ == '__main__': h1, h2, e = 128, 64, 20 mlp = MNIST_MLP(hidden1=h1, hidden2=h2,max_epoch=e) mlp.load_data() mlp.build_model() mlp.init_model() mlp.train() mlp.save_model('mlp-%d-%d-%depoch.npy' % (h1,h2,e)) mlp.load_model('mlp-%d-%d-%depoch.npy' % (h1, h2, e)) mlp.evaluate()
三、代码debug
pycharm在初次运行时,会在以下代码报错:
mlp.load_model('mlp-%d-%d-%depoch.npy' % (h1, h2, e))
ValueError: Object arrays cannot be loaded when allow_pickle=False
经过上网查看原因后,发现是numpy版本太高引起
解决方法:
点击报错处,进入源代码(.py),注释掉693行:
#if not allow_pickle: #raise ValueError("Object arrays cannot be loaded when " # "allow_pickle=False") # Now read the actual data. if dtype.hasobject: # The array contained Python objects. We need to unpickle the data. #if not allow_pickle: #raise ValueError("Object arrays cannot be loaded when " # "allow_pickle=False") if pickle_kwargs is None: pickle_kwargs = {} try: array = pickle.load(fp, **pickle_kwargs) except UnicodeError as err: if sys.version_info[0] >= 3: # Friendlier error message
四、结果展示
在不改变网络结构的条件下我通过自行调节参数主要体现在:
if __name__ == '__main__': h1, h2, e = 128, 64, 20
class MNIST_MLP(object): def __init__(self, batch_size=64, input_size=784, hidden1=32, hidden2=16, out_classes=10, lr=0.01, max_epoch=1,print_iter=100):
为了提高准确率,当然你可以从其他方面进行修改,以下是我得出的输出结果:
补充
ValueError: Object arrays cannot be loaded when allow_pickle=False解决方案
在读.npz文件时报下面错误:
population_data=np.load("./data/populations.npz") print(population_data.files)#里面有两个数组 data feature_names data=population_data['data'] print(data) print(population_data['feature_names'])
报错:
['data', 'feature_names'] Traceback (most recent call last): File "E:/pycharm file/使用scikit-learn构建模型/构建一元线性模型.py", line 32, in <module> data=population_data['data'] File "E:\pycharm file\venv\lib\site-packages\numpy\lib\npyio.py", line 262, in __getitem__ pickle_kwargs=self.pickle_kwargs) File "E:\pycharm file\venv\lib\site-packages\numpy\lib\format.py", line 692, in read_array raise ValueError("Object arrays cannot be loaded when " ValueError: Object arrays cannot be loaded when allow_pickle=False
报错为:numpy版本太高,我用的是1.16.3,应该降级为1.16.2
两种解决方案:
Numpy 1.16.3几天前发布了。从发行版本中说明:“函数np.load()和np.lib.format.read_array()采用allow_pickle关键字,现在默认为False以响应CVE-2019-6446 < nvd.nist.gov/vuln/detail / CVE-2019-6446 >“。降级到1.16.2对我有帮助,因为错误发生在一些library内部
第一种:点击报错处,进入源代码(.py),注释掉693行:
#if not allow_pickle: #raise ValueError("Object arrays cannot be loaded when " # "allow_pickle=False") # Now read the actual data. if dtype.hasobject: # The array contained Python objects. We need to unpickle the data. #if not allow_pickle: #raise ValueError("Object arrays cannot be loaded when " # "allow_pickle=False") if pickle_kwargs is None: pickle_kwargs = {} try: array = pickle.load(fp, **pickle_kwargs) except UnicodeError as err: if sys.version_info[0] >= 3: # Friendlier error message
修改后成功解决了问题,但改掉源码不知道会不会有后遗症
第二种:降级numpy版本
pip install numpy==1.16.2
上述两种方法都可以成功解决报错问题
以上就是Python利用三层神经网络实现手写数字分类详解的详细内容,更多关于Python 的资料请关注服务器之家其它相关文章!
原文链接:https://blog.csdn.net/qq_50492541/article/details/121459607