为了实现finetune有如下两种解决方案:
model_fn里面定义好模型之后直接赋值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
def model_fn(features, labels, mode, params): # ..... # finetune if params.checkpoint_path and ( not tf.train.latest_checkpoint(params.model_dir)): checkpoint_path = None if tf.gfile.IsDirectory(params.checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(params.checkpoint_path) else : checkpoint_path = params.checkpoint_path tf.train.init_from_checkpoint( ckpt_dir_or_file = checkpoint_path, assignment_map = {params.checkpoint_scope: params.checkpoint_scope} # 'OptimizeLoss/':'OptimizeLoss/' ) |
使用钩子 hooks。
可以在定义tf.contrib.learn.Experiment的时候通过train_monitors参数指定
1
2
3
4
5
6
7
8
9
10
11
|
# Define the experiment experiment = tf.contrib.learn.Experiment( estimator = estimator, # Estimator train_input_fn = train_input_fn, # First-class function eval_input_fn = eval_input_fn, # First-class function train_steps = params.train_steps, # Minibatch steps min_eval_frequency = params.eval_min_frequency, # Eval frequency # train_monitors=[], # Hooks for training # eval_hooks=[eval_input_hook], # Hooks for evaluation eval_steps = params.eval_steps # Use evaluation feeder until its empty ) |
也可以在定义tf.estimator.EstimatorSpec 的时候通过training_chief_hooks参数指定。
不过个人觉得最好还是在estimator中定义,让experiment只专注于控制实验的模式(训练次数,验证次数等等)。
1
2
3
4
5
6
7
8
9
10
11
12
13
|
def model_fn(features, labels, mode, params): # .... return tf.estimator.EstimatorSpec( mode = mode, predictions = predictions, loss = loss, train_op = train_op, eval_metric_ops = eval_metric_ops, # scaffold=get_scaffold(), # training_chief_hooks=None ) |
这里顺便解释以下tf.estimator.EstimatorSpec对像的作用。该对象描述来一个模型的方方面面。包括:
当前的模式:
mode: A ModeKeys. Specifies if this is training, evaluation or prediction.
计算图
predictions: Predictions Tensor or dict of Tensor.
loss: Training loss Tensor. Must be either scalar, or with shape [1].
train_op: Op for the training step.
eval_metric_ops: Dict of metric results keyed by name. The values of the dict are the results of calling a metric function, namely a (metric_tensor, update_op) tuple. metric_tensor should be evaluated without any impact on state (typically is a pure computation results based on variables.). For example, it should not trigger the update_op or requires any input fetching.
导出策略
export_outputs: Describes the output signatures to be exported to
SavedModel and used during serving. A dict {name: output} where:
name: An arbitrary name for this output.
output: an ExportOutput object such as ClassificationOutput, RegressionOutput, or PredictOutput. Single-headed models only need to specify one entry in this dictionary. Multi-headed models should specify one entry for each head, one of which must be named using signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY.
chief钩子 训练时的模型保存策略钩子CheckpointSaverHook, 模型恢复等
training_chief_hooks: Iterable of tf.train.SessionRunHook objects to run on the chief worker during training.
worker钩子 训练时的监控策略钩子如: NanTensorHook LoggingTensorHook 等
training_hooks: Iterable of tf.train.SessionRunHook objects to run on all workers during training.
指定初始化和saver
scaffold: A tf.train.Scaffold object that can be used to set initialization, saver, and more to be used in training.
evaluation钩子
evaluation_hooks: Iterable of tf.train.SessionRunHook objects to run during evaluation.
自定义的钩子如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
class RestoreCheckpointHook(tf.train.SessionRunHook): def __init__( self , checkpoint_path, exclude_scope_patterns, include_scope_patterns ): tf.logging.info( "Create RestoreCheckpointHook." ) #super(IteratorInitializerHook, self).__init__() self .checkpoint_path = checkpoint_path self .exclude_scope_patterns = None if ( not exclude_scope_patterns) else exclude_scope_patterns.split( ',' ) self .include_scope_patterns = None if ( not include_scope_patterns) else include_scope_patterns.split( ',' ) def begin( self ): # You can add ops to the graph here. print ( 'Before starting the session.' ) # 1. Create saver #exclusions = [] #if self.checkpoint_exclude_scopes: # exclusions = [scope.strip() # for scope in self.checkpoint_exclude_scopes.split(',')] # #variables_to_restore = [] #for var in slim.get_model_variables(): #tf.global_variables(): # excluded = False # for exclusion in exclusions: # if var.op.name.startswith(exclusion): # excluded = True # break # if not excluded: # variables_to_restore.append(var) #inclusions #[var for var in tf.trainable_variables() if var.op.name.startswith('InceptionResnetV1')] variables_to_restore = tf.contrib.framework.filter_variables( slim.get_model_variables(), include_patterns = self .include_scope_patterns, # ['Conv'], exclude_patterns = self .exclude_scope_patterns, # ['biases', 'Logits'], # If True (default), performs re.search to find matches # (i.e. pattern can match any substring of the variable name). # If False, performs re.match (i.e. regexp should match from the beginning of the variable name). reg_search = True ) self .saver = tf.train.Saver(variables_to_restore) def after_create_session( self , session, coord): # When this is called, the graph is finalized and # ops can no longer be added to the graph. print ( 'Session created.' ) tf.logging.info( 'Fine-tuning from %s' % self .checkpoint_path) self .saver.restore(session, os.path.expanduser( self .checkpoint_path)) tf.logging.info( 'End fineturn from %s' % self .checkpoint_path) def before_run( self , run_context): #print('Before calling session.run().') return None #SessionRunArgs(self.your_tensor) def after_run( self , run_context, run_values): #print('Done running one step. The value of my tensor: %s', run_values.results) #if you-need-to-stop-loop: # run_context.request_stop() pass def end( self , session): #print('Done with the session.') pass |
以上这篇tensorflow estimator 使用hook实现finetune方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/andylei777/article/details/79074757