在上一篇文章tensorflow入门:tfrecord 和tf.data.TFRecordDataset的使用里,讲到了使用如何使用tf.data.TFRecordDatase来对tfrecord文件进行batch读取,即使用dataset的batch方法进行;但如果每条数据的长度不一样(常见于语音、视频、NLP等领域),则不能直接用batch方法获取数据,这时则有两个解决办法:
1.在把数据写入tfrecord时,先把数据pad到统一的长度再写入tfrecord;这个方法的问题在于:若是有大量数据的长度都远远小于最大长度,则会造成存储空间的大量浪费。
2.使用dataset中的padded_batch方法来进行,参数padded_shapes #指明每条记录中各成员要pad成的形状,成员若是scalar,则用[],若是list,则用[mx_length],若是array,则用[d1,...,dn],假如各成员的顺序是scalar数据、list数据、array数据,则padded_shapes=([], [mx_length], [d1,...,dn]);该方法的函数说明如下:
1
2
3
4
5
|
padded_batch( batch_size, padded_shapes, padding_values = None #默认使用各类型数据的默认值,一般使用时可忽略该项 ) |
使用mnist数据来举例说明,首先在把mnist写入tfrecord之前,把mnist数据进行更改,以使得每个mnist图像的大小不等,如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
import tensorflow as tf from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets mnist = read_data_sets( "MNIST_data/" , one_hot = True ) def get_tfrecords_example(feature, label): tfrecords_features = {} feat_shape = feature.shape tfrecords_features[ 'feature' ] = tf.train.Feature(float_list = tf.train.FloatList(value = feature)) tfrecords_features[ 'shape' ] = tf.train.Feature(int64_list = tf.train.Int64List(value = list (feat_shape))) tfrecords_features[ 'label' ] = tf.train.Feature(float_list = tf.train.FloatList(value = label)) return tf.train.Example(features = tf.train.Features(feature = tfrecords_features)) def make_tfrecord(data, outf_nm = 'mnist-train' ): feats, labels = data outf_nm + = '.tfrecord' tfrecord_wrt = tf.python_io.TFRecordWriter(outf_nm) ndatas = len (labels) print (feats[ 0 ].dtype, feats[ 0 ].shape, ndatas) assert len (labels[ 0 ]) > 1 for inx in range (ndatas): ed = random.randint( 0 , 3 ) #随机丢掉几个数据点,以使长度不等 exmp = get_tfrecords_example(feats[inx][: - ed], labels[inx]) exmp_serial = exmp.SerializeToString() tfrecord_wrt.write(exmp_serial) tfrecord_wrt.close() import random nDatas = len (mnist.train.labels) inx_lst = range (nDatas) random.shuffle(inx_lst) random.shuffle(inx_lst) ntrains = int ( 0.85 * nDatas) # make training set data = ([mnist.train.images[i] for i in inx_lst[:ntrains]], \ [mnist.train.labels[i] for i in inx_lst[:ntrains]]) make_tfrecord(data, outf_nm = 'mnist-train' ) # make validation set data = ([mnist.train.images[i] for i in inx_lst[ntrains:]], \ [mnist.train.labels[i] for i in inx_lst[ntrains:]]) make_tfrecord(data, outf_nm = 'mnist-val' ) # make test set data = (mnist.test.images, mnist.test.labels) make_tfrecord(data, outf_nm = 'mnist-test' ) |
用dataset加载批量数据,在解析数据时用到tf.VarLenFeature(tf.datatype),而非tf.FixedLenFeature([], tf.datatype)},且要配合tf.sparse_tensor_to_dense函数使用,如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import tensorflow as tf train_f, val_f, test_f = [ 'mnist-%s.tfrecord' % i for i in [ 'train' , 'val' , 'test' ]] def parse_exmp(serial_exmp): feats = tf.parse_single_example(serial_exmp, features = { 'feature' :tf.VarLenFeature(tf.float32),\ 'label' :tf.FixedLenFeature([ 10 ],tf.float32), 'shape' :tf.FixedLenFeature([], tf.int64)}) image = tf.sparse_tensor_to_dense(feats[ 'feature' ]) #使用VarLenFeature读入的是一个sparse_tensor,用该函数进行转换 label = tf.reshape(feats[ 'label' ],[ 2 , 5 ]) #把label变成[2,5],以说明array数据如何padding shape = tf.cast(feats[ 'shape' ], tf.int32) return image, label, shape def get_dataset(fname): dataset = tf.data.TFRecordDataset(fname) return dataset. map (parse_exmp) # use padded_batch method if padding needed epochs = 16 batch_size = 50 padded_shapes = ([ 784 ],[ 3 , 5 ],[]) #把image pad至784,把label pad至[3,5],shape是一个scalar,不输入数字 # training dataset dataset_train = get_dataset(train_f) dataset_train = dataset_train.repeat(epochs).shuffle( 1000 ).padded_batch(batch_size, padded_shapes = padded_shapes) |
以上这篇tensorflow入门:TFRecordDataset变长数据的batch读取详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/yeqiustu/article/details/79795639