实验环境
win10 + anaconda + jupyter notebook
Pytorch1.1.0
Python3.7
gpu环境(可选)
MNIST数据集介绍
MNIST 包括6万张28x28的训练样本,1万张测试样本,可以说是CV里的“Hello Word”。本文使用的CNN网络将MNIST数据的识别率提高到了99%。下面我们就开始进行实战。
导入包
1
2
3
4
5
6
|
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms torch.__version__ |
定义超参数
1
2
3
|
BATCH_SIZE = 512 EPOCHS = 20 DEVICE = torch.device( "cuda" if torch.cuda.is_available() else "cpu" ) |
数据集
我们直接使用PyTorch中自带的dataset,并使用DataLoader对训练数据和测试数据分别进行读取。如果下载过数据集这里download可选择False
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
train_loader = torch.utils.data.DataLoader( datasets.MNIST( 'data' , train = True , download = True , transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(( 0.1307 ,), ( 0.3081 ,)) ])), batch_size = BATCH_SIZE, shuffle = True ) test_loader = torch.utils.data.DataLoader( datasets.MNIST( 'data' , train = False , transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(( 0.1307 ,), ( 0.3081 ,)) ])), batch_size = BATCH_SIZE, shuffle = True ) |
定义网络
该网络包括两个卷积层和两个线性层,最后输出10个维度,即代表0-9十个数字。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
class ConvNet(nn.Module): def __init__( self ): super ().__init__() self .conv1 = nn.Conv2d( 1 , 10 , 5 ) # input:(1,28,28) output:(10,24,24) self .conv2 = nn.Conv2d( 10 , 20 , 3 ) # input:(10,12,12) output:(20,10,10) self .fc1 = nn.Linear( 20 * 10 * 10 , 500 ) self .fc2 = nn.Linear( 500 , 10 ) def forward( self ,x): in_size = x.size( 0 ) out = self .conv1(x) out = F.relu(out) out = F.max_pool2d(out, 2 , 2 ) out = self .conv2(out) out = F.relu(out) out = out.view(in_size, - 1 ) out = self .fc1(out) out = F.relu(out) out = self .fc2(out) out = F.log_softmax(out,dim = 1 ) return out |
实例化网络
1
2
|
model = ConvNet().to(DEVICE) # 将网络移动到gpu上 optimizer = optim.Adam(model.parameters()) # 使用Adam优化器 |
定义训练函数
1
2
3
4
5
6
7
8
9
10
11
12
13
|
def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate (train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if (batch_idx + 1 ) % 30 = = 0 : print ( 'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}' . format ( epoch, batch_idx * len (data), len (train_loader.dataset), 100. * batch_idx / len (train_loader), loss.item())) |
定义测试函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
def test(model, device, test_loader): model. eval () test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss + = F.nll_loss(output, target, reduction = 'sum' ).item() # 将一批的损失相加 pred = output. max ( 1 , keepdim = True )[ 1 ] # 找到概率最大的下标 correct + = pred.eq(target.view_as(pred)). sum ().item() test_loss / = len (test_loader.dataset) print ( '\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n' . format ( test_loss, correct, len (test_loader.dataset), 100. * correct / len (test_loader.dataset))) |
开始训练
1
2
3
|
for epoch in range ( 1 , EPOCHS + 1 ): train(model, DEVICE, train_loader, optimizer, epoch) test(model, DEVICE, test_loader) |
实验结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
Train Epoch: 1 [ 14848 / 60000 ( 25 % )] Loss: 0.375058 Train Epoch: 1 [ 30208 / 60000 ( 50 % )] Loss: 0.255248 Train Epoch: 1 [ 45568 / 60000 ( 75 % )] Loss: 0.128060 Test set : Average loss: 0.0992 , Accuracy: 9690 / 10000 ( 97 % ) Train Epoch: 2 [ 14848 / 60000 ( 25 % )] Loss: 0.093066 Train Epoch: 2 [ 30208 / 60000 ( 50 % )] Loss: 0.087888 Train Epoch: 2 [ 45568 / 60000 ( 75 % )] Loss: 0.068078 Test set : Average loss: 0.0599 , Accuracy: 9816 / 10000 ( 98 % ) Train Epoch: 3 [ 14848 / 60000 ( 25 % )] Loss: 0.043926 Train Epoch: 3 [ 30208 / 60000 ( 50 % )] Loss: 0.037321 Train Epoch: 3 [ 45568 / 60000 ( 75 % )] Loss: 0.068404 Test set : Average loss: 0.0416 , Accuracy: 9859 / 10000 ( 99 % ) Train Epoch: 4 [ 14848 / 60000 ( 25 % )] Loss: 0.031654 Train Epoch: 4 [ 30208 / 60000 ( 50 % )] Loss: 0.041341 Train Epoch: 4 [ 45568 / 60000 ( 75 % )] Loss: 0.036493 Test set : Average loss: 0.0361 , Accuracy: 9873 / 10000 ( 99 % ) Train Epoch: 5 [ 14848 / 60000 ( 25 % )] Loss: 0.027688 Train Epoch: 5 [ 30208 / 60000 ( 50 % )] Loss: 0.019488 Train Epoch: 5 [ 45568 / 60000 ( 75 % )] Loss: 0.018023 Test set : Average loss: 0.0344 , Accuracy: 9875 / 10000 ( 99 % ) Train Epoch: 6 [ 14848 / 60000 ( 25 % )] Loss: 0.024212 Train Epoch: 6 [ 30208 / 60000 ( 50 % )] Loss: 0.018689 Train Epoch: 6 [ 45568 / 60000 ( 75 % )] Loss: 0.040412 Test set : Average loss: 0.0350 , Accuracy: 9879 / 10000 ( 99 % ) Train Epoch: 7 [ 14848 / 60000 ( 25 % )] Loss: 0.030426 Train Epoch: 7 [ 30208 / 60000 ( 50 % )] Loss: 0.026939 Train Epoch: 7 [ 45568 / 60000 ( 75 % )] Loss: 0.010722 Test set : Average loss: 0.0287 , Accuracy: 9892 / 10000 ( 99 % ) Train Epoch: 8 [ 14848 / 60000 ( 25 % )] Loss: 0.021109 Train Epoch: 8 [ 30208 / 60000 ( 50 % )] Loss: 0.034845 Train Epoch: 8 [ 45568 / 60000 ( 75 % )] Loss: 0.011223 Test set : Average loss: 0.0299 , Accuracy: 9904 / 10000 ( 99 % ) Train Epoch: 9 [ 14848 / 60000 ( 25 % )] Loss: 0.011391 Train Epoch: 9 [ 30208 / 60000 ( 50 % )] Loss: 0.008091 Train Epoch: 9 [ 45568 / 60000 ( 75 % )] Loss: 0.039870 Test set : Average loss: 0.0341 , Accuracy: 9890 / 10000 ( 99 % ) Train Epoch: 10 [ 14848 / 60000 ( 25 % )] Loss: 0.026813 Train Epoch: 10 [ 30208 / 60000 ( 50 % )] Loss: 0.011159 Train Epoch: 10 [ 45568 / 60000 ( 75 % )] Loss: 0.024884 Test set : Average loss: 0.0286 , Accuracy: 9901 / 10000 ( 99 % ) Train Epoch: 11 [ 14848 / 60000 ( 25 % )] Loss: 0.006420 Train Epoch: 11 [ 30208 / 60000 ( 50 % )] Loss: 0.003641 Train Epoch: 11 [ 45568 / 60000 ( 75 % )] Loss: 0.003402 Test set : Average loss: 0.0377 , Accuracy: 9894 / 10000 ( 99 % ) Train Epoch: 12 [ 14848 / 60000 ( 25 % )] Loss: 0.006866 Train Epoch: 12 [ 30208 / 60000 ( 50 % )] Loss: 0.012617 Train Epoch: 12 [ 45568 / 60000 ( 75 % )] Loss: 0.008548 Test set : Average loss: 0.0311 , Accuracy: 9908 / 10000 ( 99 % ) Train Epoch: 13 [ 14848 / 60000 ( 25 % )] Loss: 0.010539 Train Epoch: 13 [ 30208 / 60000 ( 50 % )] Loss: 0.002952 Train Epoch: 13 [ 45568 / 60000 ( 75 % )] Loss: 0.002313 Test set : Average loss: 0.0293 , Accuracy: 9905 / 10000 ( 99 % ) Train Epoch: 14 [ 14848 / 60000 ( 25 % )] Loss: 0.002100 Train Epoch: 14 [ 30208 / 60000 ( 50 % )] Loss: 0.000779 Train Epoch: 14 [ 45568 / 60000 ( 75 % )] Loss: 0.005952 Test set : Average loss: 0.0335 , Accuracy: 9897 / 10000 ( 99 % ) Train Epoch: 15 [ 14848 / 60000 ( 25 % )] Loss: 0.006053 Train Epoch: 15 [ 30208 / 60000 ( 50 % )] Loss: 0.002559 Train Epoch: 15 [ 45568 / 60000 ( 75 % )] Loss: 0.002555 Test set : Average loss: 0.0357 , Accuracy: 9894 / 10000 ( 99 % ) Train Epoch: 16 [ 14848 / 60000 ( 25 % )] Loss: 0.000895 Train Epoch: 16 [ 30208 / 60000 ( 50 % )] Loss: 0.004923 Train Epoch: 16 [ 45568 / 60000 ( 75 % )] Loss: 0.002339 Test set : Average loss: 0.0400 , Accuracy: 9893 / 10000 ( 99 % ) Train Epoch: 17 [ 14848 / 60000 ( 25 % )] Loss: 0.004136 Train Epoch: 17 [ 30208 / 60000 ( 50 % )] Loss: 0.000927 Train Epoch: 17 [ 45568 / 60000 ( 75 % )] Loss: 0.002084 Test set : Average loss: 0.0353 , Accuracy: 9895 / 10000 ( 99 % ) Train Epoch: 18 [ 14848 / 60000 ( 25 % )] Loss: 0.004508 Train Epoch: 18 [ 30208 / 60000 ( 50 % )] Loss: 0.001272 Train Epoch: 18 [ 45568 / 60000 ( 75 % )] Loss: 0.000543 Test set : Average loss: 0.0380 , Accuracy: 9894 / 10000 ( 99 % ) Train Epoch: 19 [ 14848 / 60000 ( 25 % )] Loss: 0.001699 Train Epoch: 19 [ 30208 / 60000 ( 50 % )] Loss: 0.000661 Train Epoch: 19 [ 45568 / 60000 ( 75 % )] Loss: 0.000275 Test set : Average loss: 0.0339 , Accuracy: 9905 / 10000 ( 99 % ) Train Epoch: 20 [ 14848 / 60000 ( 25 % )] Loss: 0.000441 Train Epoch: 20 [ 30208 / 60000 ( 50 % )] Loss: 0.000695 Train Epoch: 20 [ 45568 / 60000 ( 75 % )] Loss: 0.000467 Test set : Average loss: 0.0396 , Accuracy: 9894 / 10000 ( 99 % ) |
总结
一个实际项目的工作流程:找到数据集,对数据做预处理,定义我们的模型,调整超参数,测试训练,再通过训练结果对超参数进行调整或者对模型进行调整。
以上这篇使用PyTorch实现MNIST手写体识别代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/abcgkj/article/details/100884143