一维线性拟合
数据为y=4x+5加上噪音
结果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
import numpy as np from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt from torch.autograd import Variable import torch from torch import nn X = torch.unsqueeze(torch.linspace( - 1 , 1 , 100 ), dim = 1 ) Y = 4 * X + 5 + torch.rand(X.size()) class LinearRegression(nn.Module): def __init__( self ): super (LinearRegression, self ).__init__() self .linear = nn.Linear( 1 , 1 ) # 输入和输出的维度都是1 def forward( self , X): out = self .linear(X) return out model = LinearRegression() criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr = 1e - 2 ) num_epochs = 1000 for epoch in range (num_epochs): inputs = Variable(X) target = Variable(Y) # 向前传播 out = model(inputs) loss = criterion(out, target) # 向后传播 optimizer.zero_grad() # 注意每次迭代都需要清零 loss.backward() optimizer.step() if (epoch + 1 ) % 20 = = 0 : print ( 'Epoch[{}/{}], loss:{:.6f}' . format (epoch + 1 , num_epochs, loss.item())) model. eval () predict = model(Variable(X)) predict = predict.data.numpy() plt.plot(X.numpy(), Y.numpy(), 'ro' , label = 'Original Data' ) plt.plot(X.numpy(), predict, label = 'Fitting Line' ) plt.show() |
多维:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
from itertools import count import torch import torch.autograd import torch.nn.functional as F POLY_DEGREE = 3 def make_features(x): """Builds features i.e. a matrix with columns [x, x^2, x^3].""" x = x.unsqueeze( 1 ) return torch.cat([x * * i for i in range ( 1 , POLY_DEGREE + 1 )], 1 ) W_target = torch.randn(POLY_DEGREE, 1 ) b_target = torch.randn( 1 ) def f(x): return x.mm(W_target) + b_target.item() def get_batch(batch_size = 32 ): random = torch.randn(batch_size) x = make_features(random) y = f(x) return x, y # Define model fc = torch.nn.Linear(W_target.size( 0 ), 1 ) batch_x, batch_y = get_batch() print (batch_x,batch_y) for batch_idx in count( 1 ): # Get data # Reset gradients fc.zero_grad() # Forward pass output = F.smooth_l1_loss(fc(batch_x), batch_y) loss = output.item() # Backward pass output.backward() # Apply gradients for param in fc.parameters(): param.data.add_( - 0.1 * param.grad.data) # Stop criterion if loss < 1e - 3 : break def poly_desc(W, b): """Creates a string description of a polynomial.""" result = 'y = ' for i, w in enumerate (W): result + = '{:+.2f} x^{} ' . format (w, len (W) - i) result + = '{:+.2f}' . format (b[ 0 ]) return result print ( 'Loss: {:.6f} after {} batches' . format (loss, batch_idx)) print ( '==> Learned function:\t' + poly_desc(fc.weight.view( - 1 ), fc.bias)) print ( '==> Actual function:\t' + poly_desc(W_target.view( - 1 ), b_target)) |
以上这篇pytorch实现线性拟合方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/wangqianqianya/article/details/102764971