PyTorch提供了ImageFolder的类来加载文件结构如下的图片数据集:
1
2
3
4
5
6
7
|
root / dog / xxx.png root / dog / xxy.png root / dog / xxz.png root / cat / 123.png root / cat / nsdf3.png root / cat / asd932_.png |
使用这个类的问题在于无法将训练集(training dataset)和验证集(validation dataset)分开。我写了两个类来完成这个工作。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
import os import torch from torch.utils.data import Dataset, DataLoader from torchvision.transforms import ToTensor, Resize, Compose from PIL import Image from sklearn.model_selection import train_test_split class ImageFolderSplitter: # images should be placed in folders like: # --root # ----root\dogs # ----root\dogs\image1.png # ----root\dogs\image2.png # ----root\cats # ----root\cats\image1.png # ----root\cats\image2.png # path: the root of the image folder def __init__( self , path, train_size = 0.8 ): self .path = path self .train_size = train_size self .class2num = {} self .num2class = {} self .class_nums = {} self .data_x_path = [] self .data_y_label = [] self .x_train = [] self .x_valid = [] self .y_train = [] self .y_valid = [] for root, dirs, files in os.walk(path): if len (files) = = 0 and len (dirs) > 1 : for i, dir1 in enumerate (dirs): self .num2class[i] = dir1 self .class2num[dir1] = i elif len (files) > 1 and len (dirs) = = 0 : category = "" for key in self .class2num.keys(): if key in root: category = key break label = self .class2num[category] self .class_nums[label] = 0 for file1 in files: self .data_x_path.append(os.path.join(root, file1)) self .data_y_label.append(label) self .class_nums[label] + = 1 else : raise RuntimeError( "please check the folder structure!" ) self .x_train, self .x_valid, self .y_train, self .y_valid = train_test_split( self .data_x_path, self .data_y_label, shuffle = True , train_size = self .train_size) def getTrainingDataset( self ): return self .x_train, self .y_train def getValidationDataset( self ): return self .x_valid, self .y_valid class DatasetFromFilename(Dataset): # x: a list of image file full path # y: a list of image categories def __init__( self , x, y, transforms = None ): super (DatasetFromFilename, self ).__init__() self .x = x self .y = y if transforms = = None : self .transforms = ToTensor() else : self .transforms = transforms def __len__( self ): return len ( self .x) def __getitem__( self , idx): img = Image. open ( self .x[idx]) img = img.convert( "RGB" ) return self .transforms(img), torch.tensor([[ self .y[idx]]]) # test code # splitter = ImageFolderSplitter("for_test") # transforms = Compose([Resize((51, 51)), ToTensor()]) # x_train, y_train = splitter.getTrainingDataset() # training_dataset = DatasetFromFilename(x_train, y_train, transforms=transforms) # training_dataloader = DataLoader(training_dataset, batch_size=2, shuffle=True) # x_valid, y_valid = splitter.getValidationDataset() # validation_dataset = DatasetFromFilename(x_valid, y_valid, transforms=transforms) # validation_dataloader = DataLoader(validation_dataset, batch_size=2, shuffle=True) # for x, y in training_dataloader: # print(x.shape, y.shape) |
更多的代码可以在我的Github reop下找到。
原文链接:https://blog.csdn.net/xgbm_k/article/details/84325347