AttributeError: 'dict' object has no attribute 'seek'. You can only torch.load from a file that is seekable. Please pre-load the data into a buffer like io.BytesIO and try to load from it instead.
我们一步一步分析。
模型网络权重保存额代码是:torch.save(net.state_dict(),'net.pkl')
(1)查看获取模型权重的源码:
pytorch源码:net.state_dict()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
def state_dict( self , destination = None , prefix = '', keep_vars = False ): r """Returns a dictionary containing a whole state of the module. Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Returns: dict: a dictionary containing a whole state of the module Example:: >>> module.state_dict().keys() ['bias', 'weight'] """ |
将网络中所有的状态保存到一个字典中了,我自己构建的就是一个字典,没问题!
(2)查看保存模型权重的源码:
pytorch源码:torch.save()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
def save(obj, f, pickle_module = pickle, pickle_protocol = DEFAULT_PROTOCOL): """Saves an object to a disk file . See also: :ref:`recommend - saving - models` Args: obj: saved object f: a file - like object (has to implement write and flush) or a string containing a file name pickle_module: module used for pickling metadata and objects pickle_protocol: can be specified to override the default protocol .. warning:: If you are using Python 2 , torch.save does NOT support StringIO.StringIO as a valid file - like object . This is because the write method should return the number of bytes written; StringIO.write() does not do this. Please use something like io.BytesIO instead. |
函数功能是将字典保存为磁盘文件(二进制数据),那么我们在torch.load()时,就是在内存中加载二进制数据,这就是报错点。
解决方案:将字典保存为BytesIO文件之后,模型再net.load_state_dict()
1
2
3
|
#b为自定义的字典 torch.save(b, 'new.pkl' ) net.load_state_dict(torch.load(b)) |
解决方法很简单,主要记录解决思路。
以上这篇pytorch加载自定义网络权重的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_34789262/article/details/83376374