简介
自适应池化Adaptive Pooling是PyTorch含有的一种池化层,在PyTorch的中有六种形式:
自适应最大池化Adaptive Max Pooling:
torch.nn.AdaptiveMaxPool1d(output_size)
torch.nn.AdaptiveMaxPool2d(output_size)
torch.nn.AdaptiveMaxPool3d(output_size)
自适应平均池化Adaptive Average Pooling:
torch.nn.AdaptiveAvgPool1d(output_size)
torch.nn.AdaptiveAvgPool2d(output_size)
torch.nn.AdaptiveAvgPool3d(output_size)
具体可见官方文档。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
官方给出的例子: >>> # target output size of 5x7 >>> m = nn.AdaptiveMaxPool2d(( 5 , 7 )) >>> input = torch.randn( 1 , 64 , 8 , 9 ) >>> output = m( input ) >>> output.size() torch.Size([ 1 , 64 , 5 , 7 ]) >>> # target output size of 7x7 (square) >>> m = nn.AdaptiveMaxPool2d( 7 ) >>> input = torch.randn( 1 , 64 , 10 , 9 ) >>> output = m( input ) >>> output.size() torch.Size([ 1 , 64 , 7 , 7 ]) >>> # target output size of 10x7 >>> m = nn.AdaptiveMaxPool2d(( None , 7 )) >>> input = torch.randn( 1 , 64 , 10 , 9 ) >>> output = m( input ) >>> output.size() torch.Size([ 1 , 64 , 10 , 7 ]) |
Adaptive Pooling特殊性在于,输出张量的大小都是给定的output_size output\_sizeoutput_size。例如输入张量大小为(1, 64, 8, 9),设定输出大小为(5,7),通过Adaptive Pooling层,可以得到大小为(1, 64, 5, 7)的张量。
原理
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
>>> inputsize = 9 >>> outputsize = 4 >>> input = torch.randn( 1 , 1 , inputsize) >>> input tensor([[[ 1.5695 , - 0.4357 , 1.5179 , 0.9639 , - 0.4226 , 0.5312 , - 0.5689 , 0.4945 , 0.1421 ]]]) >>> m1 = nn.AdaptiveMaxPool1d(outputsize) >>> m2 = nn.MaxPool1d(kernel_size = math.ceil(inputsize / outputsize), stride = math.floor(inputsize / outputsize), padding = 0 ) >>> output1 = m1( input ) >>> output2 = m2( input ) >>> output1 tensor([[[ 1.5695 , 1.5179 , 0.5312 , 0.4945 ]]]) torch.Size([ 1 , 1 , 4 ]) >>> output2 tensor([[[ 1.5695 , 1.5179 , 0.5312 , 0.4945 ]]]) torch.Size([ 1 , 1 , 4 ]) |
通过实验发现:
下面是Adaptive Average Pooling的c++源码部分。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
template < typename scalar_t> static void adaptive_avg_pool2d_out_frame( scalar_t *input_p, scalar_t *output_p, int64_t sizeD, int64_t isizeH, int64_t isizeW, int64_t osizeH, int64_t osizeW, int64_t istrideD, int64_t istrideH, int64_t istrideW) { int64_t d; #pragma omp parallel for private(d) for (d = 0; d < sizeD; d++) { /* loop over output */ int64_t oh, ow; for (oh = 0; oh < osizeH; oh++) { int istartH = start_index(oh, osizeH, isizeH); int iendH = end_index(oh, osizeH, isizeH); int kH = iendH - istartH; for (ow = 0; ow < osizeW; ow++) { int istartW = start_index(ow, osizeW, isizeW); int iendW = end_index(ow, osizeW, isizeW); int kW = iendW - istartW; /* local pointers */ scalar_t *ip = input_p + d*istrideD + istartH*istrideH + istartW*istrideW; scalar_t *op = output_p + d*osizeH*osizeW + oh*osizeW + ow; /* compute local average: */ scalar_t sum = 0; int ih, iw; for (ih = 0; ih < kH; ih++) { for (iw = 0; iw < kW; iw++) { scalar_t val = *(ip + ih*istrideH + iw*istrideW); sum += val; } } /* set output to local average */ *op = sum / kW / kH; } } } } |
以上这篇PyTorch的自适应池化Adaptive Pooling实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/u013382233/article/details/85948695