关于Maven的使用就不再啰嗦了,网上很多,并且这么多年变化也不大,这里仅介绍怎么搭建Hadoop的开发环境。
1. 首先创建工程
复制代码 代码如下:
mvn archetype:generate -DgroupId=my.hadoopstudy -DartifactId=hadoopstudy -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false
2. 然后在pom.xml文件里添加hadoop的依赖包hadoop-common, hadoop-client, hadoop-hdfs,添加后的pom.xml文件如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
<project xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance" xmlns= "http://maven.apache.org/POM/4.0.0" xsi:schemaLocation= "http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd" > <modelVersion> 4.0 . 0 </modelVersion> <groupId>my.hadoopstudy</groupId> <artifactId>hadoopstudy</artifactId> <packaging>jar</packaging> <version> 1.0 -SNAPSHOT</version> <name>hadoopstudy</name> <url>http: //maven.apache.org</url> <dependencies> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version> 2.5 . 1 </version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-hdfs</artifactId> <version> 2.5 . 1 </version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version> 2.5 . 1 </version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version> 3.8 . 1 </version> <scope>test</scope> </dependency> </dependencies> </project> |
3. 测试
3.1 首先我们可以测试一下hdfs的开发,这里假定使用上一篇Hadoop文章中的hadoop集群,类代码如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
package my.hadoopstudy.dfs; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; import java.io.InputStream; import java.net.URI; public class Test { public static void main(String[] args) throws Exception { String uri = "hdfs://9.111.254.189:9000/" ; Configuration config = new Configuration(); FileSystem fs = FileSystem.get(URI.create(uri), config); // 列出hdfs上/user/fkong/目录下的所有文件和目录 FileStatus[] statuses = fs.listStatus( new Path( "/user/fkong" )); for (FileStatus status : statuses) { System.out.println(status); } // 在hdfs的/user/fkong目录下创建一个文件,并写入一行文本 FSDataOutputStream os = fs.create( new Path( "/user/fkong/test.log" )); os.write( "Hello World!" .getBytes()); os.flush(); os.close(); // 显示在hdfs的/user/fkong下指定文件的内容 InputStream is = fs.open( new Path( "/user/fkong/test.log" )); IOUtils.copyBytes(is, System.out, 1024 , true ); } } |
3.2 测试MapReduce作业
测试代码比较简单,如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
package my.hadoopstudy.mapreduce; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; import java.io.IOException; public class EventCount { public static class MyMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable( 1 ); private Text event = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { int idx = value.toString().indexOf( " " ); if (idx > 0 ) { String e = value.toString().substring( 0 , idx); event.set(e); context.write(event, one); } } } public static class MyReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0 ; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length < 2 ) { System.err.println( "Usage: EventCount <in> <out>" ); System.exit( 2 ); } Job job = Job.getInstance(conf, "event count" ); job.setJarByClass(EventCount. class ); job.setMapperClass(MyMapper. class ); job.setCombinerClass(MyReducer. class ); job.setReducerClass(MyReducer. class ); job.setOutputKeyClass(Text. class ); job.setOutputValueClass(IntWritable. class ); FileInputFormat.addInputPath(job, new Path(otherArgs[ 0 ])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[ 1 ])); System.exit(job.waitForCompletion( true ) ? 0 : 1 ); } } |
运行“mvn package”命令产生jar包hadoopstudy-1.0-SNAPSHOT.jar,并将jar文件复制到hadoop安装目录下
这里假定我们需要分析几个日志文件中的Event信息来统计各种Event个数,所以创建一下目录和文件
/tmp/input/event.log.1
/tmp/input/event.log.2
/tmp/input/event.log.3
因为这里只是要做一个列子,所以每个文件内容可以都一样,假如内容如下
JOB_NEW ...
JOB_NEW ...
JOB_FINISH ...
JOB_NEW ...
JOB_FINISH ...
然后把这些文件复制到HDFS上
复制代码 代码如下:
$ bin/hdfs dfs -put /tmp/input /user/fkong/input
运行mapreduce作业
复制代码 代码如下:
$ bin/hadoop jar hadoopstudy-1.0-SNAPSHOT.jar my.hadoopstudy.mapreduce.EventCount /user/fkong/input /user/fkong/output
查看执行结果
复制代码 代码如下:
$ bin/hdfs dfs -cat /user/fkong/output/part-r-00000
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://www.kongxx.info/blog/?p=186