服务器之家

服务器之家 > 正文

使用Maven搭建Hadoop开发环境

时间:2020-06-22 12:48     来源/作者:kongxx

关于Maven的使用就不再啰嗦了,网上很多,并且这么多年变化也不大,这里仅介绍怎么搭建Hadoop的开发环境。

1. 首先创建工程

 

复制代码 代码如下:
mvn archetype:generate -DgroupId=my.hadoopstudy -DartifactId=hadoopstudy -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

 

2. 然后在pom.xml文件里添加hadoop的依赖包hadoop-common, hadoop-client, hadoop-hdfs,添加后的pom.xml文件如下

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://maven.apache.org/POM/4.0.0"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>my.hadoopstudy</groupId>
 <artifactId>hadoopstudy</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>hadoopstudy</name>
 <url>http://maven.apache.org</url>
 
 <dependencies>
 <dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-common</artifactId>
  <version>2.5.1</version>
 </dependency>
 <dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-hdfs</artifactId>
  <version>2.5.1</version>
 </dependency>
 <dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>2.5.1</version>
 </dependency>
 
 <dependency>
  <groupId>junit</groupId>
  <artifactId>junit</artifactId>
  <version>3.8.1</version>
  <scope>test</scope>
 </dependency>
 </dependencies>
</project>

3. 测试

3.1 首先我们可以测试一下hdfs的开发,这里假定使用上一篇Hadoop文章中的hadoop集群,类代码如下

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
package my.hadoopstudy.dfs;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
 
import java.io.InputStream;
import java.net.URI;
 
public class Test {
 public static void main(String[] args) throws Exception {
 String uri = "hdfs://9.111.254.189:9000/";
 Configuration config = new Configuration();
 FileSystem fs = FileSystem.get(URI.create(uri), config);
 
 // 列出hdfs上/user/fkong/目录下的所有文件和目录
 FileStatus[] statuses = fs.listStatus(new Path("/user/fkong"));
 for (FileStatus status : statuses) {
  System.out.println(status);
 }
 
 // 在hdfs的/user/fkong目录下创建一个文件,并写入一行文本
 FSDataOutputStream os = fs.create(new Path("/user/fkong/test.log"));
 os.write("Hello World!".getBytes());
 os.flush();
 os.close();
 
 // 显示在hdfs的/user/fkong下指定文件的内容
 InputStream is = fs.open(new Path("/user/fkong/test.log"));
 IOUtils.copyBytes(is, System.out, 1024, true);
 }
}

3.2 测试MapReduce作业

测试代码比较简单,如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
package my.hadoopstudy.mapreduce;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
 
import java.io.IOException;
 
public class EventCount {
 
 public static class MyMapper extends Mapper<Object, Text, Text, IntWritable>{
 private final static IntWritable one = new IntWritable(1);
 private Text event = new Text();
 
 public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
  int idx = value.toString().indexOf(" ");
  if (idx > 0) {
  String e = value.toString().substring(0, idx);
  event.set(e);
  context.write(event, one);
  }
 }
 }
 
 public static class MyReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();
 
 public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
  int sum = 0;
  for (IntWritable val : values) {
  sum += val.get();
  }
  result.set(sum);
  context.write(key, result);
 }
 }
 
 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
 if (otherArgs.length < 2) {
  System.err.println("Usage: EventCount <in> <out>");
  System.exit(2);
 }
 Job job = Job.getInstance(conf, "event count");
 job.setJarByClass(EventCount.class);
 job.setMapperClass(MyMapper.class);
 job.setCombinerClass(MyReducer.class);
 job.setReducerClass(MyReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

运行“mvn package”命令产生jar包hadoopstudy-1.0-SNAPSHOT.jar,并将jar文件复制到hadoop安装目录下

这里假定我们需要分析几个日志文件中的Event信息来统计各种Event个数,所以创建一下目录和文件

/tmp/input/event.log.1
/tmp/input/event.log.2
/tmp/input/event.log.3

因为这里只是要做一个列子,所以每个文件内容可以都一样,假如内容如下

JOB_NEW ...
JOB_NEW ...
JOB_FINISH ...
JOB_NEW ...
JOB_FINISH ...

然后把这些文件复制到HDFS上

 

复制代码 代码如下:
$ bin/hdfs dfs -put /tmp/input /user/fkong/input

 

运行mapreduce作业

 

复制代码 代码如下:
$ bin/hadoop jar hadoopstudy-1.0-SNAPSHOT.jar my.hadoopstudy.mapreduce.EventCount /user/fkong/input /user/fkong/output

 

查看执行结果

 

复制代码 代码如下:
$ bin/hdfs dfs -cat /user/fkong/output/part-r-00000

 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:http://www.kongxx.info/blog/?p=186

标签:

相关文章

热门资讯

2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全
2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全 2019-12-26
歪歪漫画vip账号共享2020_yy漫画免费账号密码共享
歪歪漫画vip账号共享2020_yy漫画免费账号密码共享 2020-04-07
沙雕群名称大全2019精选 今年最火的微信群名沙雕有创意
沙雕群名称大全2019精选 今年最火的微信群名沙雕有创意 2019-07-07
玄元剑仙肉身有什么用 玄元剑仙肉身境界等级划分
玄元剑仙肉身有什么用 玄元剑仙肉身境界等级划分 2019-06-21
男生常说24816是什么意思?女生说13579是什么意思?
男生常说24816是什么意思?女生说13579是什么意思? 2019-09-17
返回顶部