本文实例讲述了python计算牛顿迭代多项式的方法。分享给大家供大家参考。具体实现方法如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
''' p = evalPoly(a,xData,x). Evaluates Newton's polynomial p at x. The coefficient vector 'a' can be computed by the function 'coeffts'. a = coeffts(xData,yData). Computes the coefficients of Newton's polynomial. ''' def evalPoly(a,xData,x): n = len (xData) - 1 # Degree of polynomial p = a[n] for k in range ( 1 ,n + 1 ): p = a[n - k] + (x - xData[n - k]) * p return p def coeffts(xData,yData): m = len (xData) # Number of data points a = yData.copy() for k in range ( 1 ,m): a[k:m] = (a[k:m] - a[k - 1 ]) / (xData[k:m] - xData[k - 1 ]) return a |
希望本文所述对大家的Python程序设计有所帮助。