服务器之家

服务器之家 > 正文

浅谈tensorflow使用张量时的一些注意点tf.concat,tf.reshape,tf.stack

时间:2020-06-24 09:43     来源/作者:风之清扬

有一段时间没用tensorflow了,现在跑实验还是存在一些坑了,主要是关于张量计算的问题。tensorflow升级1.0版本后与以前的版本并不兼容,可能出现各种奇奇怪怪的问题。

1 tf.concat函数

tensorflow1.0以前函数用法:tf.concat(concat_dim, values, name='concat'),第一个参数为连接的维度,可以将几个向量按指定维度连接起来。

如:

?
1
2
3
4
5
6
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
#按照第0维连接
tf.concat(0, [t1, t2]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
#按照第1维连接
tf.concat(1, [t1, t2]) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]

tf.concat的作用主要是将向量按指定维连起来,其余维度不变;而1.0版本以后,函数的用法变成:

?
1
2
3
4
5
6
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
#按照第0维连接
tf.concat( [t1, t2],0) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
#按照第1维连接
tf.concat([t1, t2],1) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]

位置变了,需要注意。

2 tf.stack函数

用法:stack(values, axis=0, name=”stack”):

“”“Stacks a list of rank-R tensors into one rank-(R+1) tensor.

?
1
2
3
4
5
6
x = tf.constant([1, 4])
y = tf.constant([2, 5])
z = tf.constant([3, 6])
tf.stack([x,y,z]) ==> [[1,4],[2,5],[3,6]]
tf.stack([x,y,z],axis=0) ==> [[1,4],[2,5],[3,6]]
tf.stack([x,y,z],axis=1) ==> [[1, 2, 3], [4, 5, 6]]

tf.stack将一组R维张量变为R+1维张量。注意:tf.pack已经变成了tf.stack

3.tf.reshape

用法:reshape(tensor, shape, name=None):主要通过改变张量形状,可以从高维变低维,也可以从低维变高维;

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
a = tf.Variable(initial_value=[[1,2,3],[4,5,6]]) ==> shape:[2,3]
b = tf.Variable(initial_value=[[[1,2,3],[4,5,6]],[[7,8,9],[1,0,2]]]) ==> shape:[2,2,3]
 
a_1 = tf.reshape(a,[2,1,1,3]) ==> [[[[1,2,3]]],[[[4,5,6]]]]
a_2 = tf.reshape(a,[2,1,3]) ==> [[[1,2,3]],[[4,5,6]]]
b_1 = tf.reshape(b,[2,2,1,3]) ==> [[[[1,2,3]],[[4,5,6]]],[[[7,8,9]],[[1,0,2]]]]
 
new_1 = tf.concat([b_1,a_1],1)
new_2 = tf.reshape(tf.concat([b,a_2],1),[2,3,1,3])
"""
new_1:
[[[[1 2 3]]
 
 [[4 5 6]]
 
 [[1 2 3]]]
 
 
 [[[7 8 9]]
 
 [[1 0 2]]
 
 [[4 5 6]]]]
new_2;
[[[[1 2 3]]
 
 [[4 5 6]]
 
 [[1 2 3]]]
 
 
 [[[7 8 9]]
 
 [[1 0 2]]
 
 [[4 5 6]]]]

补充知识:tensorflow中的reshape(tensor,[1,-1])和reshape(tensor,[-1,1])

和python 中的reshape用法应该一样

?
1
2
3
4
5
6
import tensorflow as tf
a = [[1,2],[3,4],[5,6]]
tf.reshape(a,[-1,1])
Out[13]: <tf.Tensor 'Reshape_4:0' shape=(6, 1) dtype=int32>
tf.reshape(tf.reshape(a,[-1,1]),[1,-1])
Out[14]: <tf.Tensor 'Reshape_6:0' shape=(1, 6) dtype=int32>

tf.reshape(tensor,[-1,1])将张量变为一维列向量

tf.reshape(tensor,[1,-1])将张量变为一维行向量

以上这篇浅谈tensorflow使用张量时的一些注意点tf.concat,tf.reshape,tf.stack就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/a18852867035/article/details/79048684

相关文章

热门资讯

2022年最旺的微信头像大全 微信头像2022年最新版图片
2022年最旺的微信头像大全 微信头像2022年最新版图片 2022-01-10
蜘蛛侠3英雄无归3正片免费播放 蜘蛛侠3在线观看免费高清完整
蜘蛛侠3英雄无归3正片免费播放 蜘蛛侠3在线观看免费高清完整 2021-08-24
背刺什么意思 网络词语背刺是什么梗
背刺什么意思 网络词语背刺是什么梗 2020-05-22
yue是什么意思 网络流行语yue了是什么梗
yue是什么意思 网络流行语yue了是什么梗 2020-10-11
暖暖日本高清免费中文 暖暖在线观看免费完整版韩国
暖暖日本高清免费中文 暖暖在线观看免费完整版韩国 2021-05-08
返回顶部