服务器之家

服务器之家 > 正文

python删除指定列或多列单个或多个内容实例

时间:2020-06-28 11:08     来源/作者:Arwen_H

python中进行数据处理,经常会遇到有些元素内容是不需要的。需要进行删除或者替换。本篇就详细探讨一下各种数据类型(series,dataframe)下的删除方法

随机创建一个DataFrame数据

?
1
2
3
4
5
6
7
8
9
10
import pandas as pd
import numpy as np
data=pd.DataFrame(np.random.randint(10,size=(5,3)),columns=['a','b','c'])
>>>
 a b c
0 3 8 2
1 9 9 5
2 4 5 1
3 2 7 5
4 1 2 8

Series:

isin反函数删除不需要的列部分元素,适合大批量:

S数据类型直接使用isin会选出该列包含的指定内容,我们的需求是删除指定内容就需要用到isin的反函数。但是python目前没有类似isnotin这种函数,所以我们需要使用-号来实现isnotin的方法

!=比较运算符方式,适合少量或者用作与同时满足a条件与b条件的情况

isin:

Series的场景

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
print(data['c'][data['c'].isin([1])])
>>>
2 1
Name: c, dtype: int64
 
print(data['c'][-data['c'].isin([1])])
>>>
0 2
1 5
3 5
4 8
Name: c, dtype: int64
 
print(data['c'][-data['c'].isin([1,2])])
>>>
1 5
3 5
4 8
Name: c, dtype: int64

DataFrame场景:

?
1
2
3
4
5
6
7
8
9
10
11
12
print(data[-data.isin([1,2])])#按Series逻辑操作df发现会出现NAN并没有删除掉
>>>
 a b c
0 3.0 8.0 NaN
1 9.0 9.0 5.0
2 4.0 5.0 NaN
3 NaN 7.0 5.0
4 NaN NaN 8.0
print(data[-data.isin([1,2])].dropna())#我们只需要再加一个dropna删除空值就好了
>>>
a b c
1 9.0 9.0 5.0

!=比较运算符:

Series的场景:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
print(data['c'][data['c']!=1])
>>>
0 2
1 5
3 5
4 8
Name: c, dtype: int64
 
print(data['c'][(data['c']!=1)&((data['c']!=2))])
>>>
1 5
3 5
4 8
Name: c, dtype: int64

DataFrame场景:

分别删除a与b不同条件的数据

?
1
2
3
4
5
6
7
8
9
10
print(data[(data['a']!=1)&(data['c']!=2)]
>>>
 a b c
1 9 9 5
2 4 5 1
3 2 7 5
 
print(data[(data!=1)&(data!=2)].dropna()) #与isin原理相同
 a b c
1 9.0 9.0 5.0

以上这篇python删除指定列多列单个或多个内容实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/Arwen_H/article/details/84826669

相关文章

热门资讯

2022年最旺的微信头像大全 微信头像2022年最新版图片
2022年最旺的微信头像大全 微信头像2022年最新版图片 2022-01-10
蜘蛛侠3英雄无归3正片免费播放 蜘蛛侠3在线观看免费高清完整
蜘蛛侠3英雄无归3正片免费播放 蜘蛛侠3在线观看免费高清完整 2021-08-24
背刺什么意思 网络词语背刺是什么梗
背刺什么意思 网络词语背刺是什么梗 2020-05-22
yue是什么意思 网络流行语yue了是什么梗
yue是什么意思 网络流行语yue了是什么梗 2020-10-11
暖暖日本高清免费中文 暖暖在线观看免费完整版韩国
暖暖日本高清免费中文 暖暖在线观看免费完整版韩国 2021-05-08
返回顶部