如下所示:
1
2
3
4
5
6
7
8
9
10
|
from keras import backend as K from keras.models import load_model models = load_model( 'models.hdf5' ) image = r 'image.png' images = cv2.imread(r 'image.png' ) image_arr = process_image(image, ( 224 , 224 , 3 )) image_arr = np.expand_dims(image_arr, axis = 0 ) layer_1 = K.function([base_model.get_input_at( 0 )], [base_model.get_layer( 'layer_name' ).output]) f1 = layer_1([image_arr])[ 0 ] |
加载训练好并保存的网络模型
加载数据(图像),并将数据处理成array形式
指定输出层
将处理后的数据输入,然后获取输出
其中,K.function有两种不同的写法:
1. 获取名为layer_name的层的输出
layer_1 = K.function([base_model.get_input_at(0)], [base_model.get_layer('layer_name').output]) #指定输出层的名称
2. 获取第n层的输出
layer_1 = K.function([model.get_input_at(0)], [model.layers[5].output]) #指定输出层的序号(层号从0开始)
另外,需要注意的是,书写不规范会导致报错:
报错:
TypeError: inputs to a TensorFlow backend function should be a list or tuple
将该句:
f1 = layer_1(image_arr)[0]
修改为:
f1 = layer_1([image_arr])[0]
补充知识:keras.backend.function()
如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
def function(inputs, outputs, updates = None , * * kwargs): """Instantiates a Keras function. Arguments: inputs: List of placeholder tensors. outputs: List of output tensors. updates: List of update ops. **kwargs: Passed to `tf.Session.run`. Returns: Output values as Numpy arrays. Raises: ValueError: if invalid kwargs are passed in. """ if kwargs: for key in kwargs: if (key not in tf_inspect.getargspec(session_module.Session.run)[ 0 ] and key not in tf_inspect.getargspec(Function.__init__)[ 0 ]): msg = ( 'Invalid argument "%s" passed to K.function with Tensorflow ' 'backend' ) % key raise ValueError(msg) return Function(inputs, outputs, updates = updates, * * kwargs) |
这是keras.backend.function()的源码。其中函数定义开头的注释就是官方文档对该函数的解释。
我们可以发现function()函数返回的是一个Function对象。下面是Function类的定义。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
class Function( object ): """Runs a computation graph. Arguments: inputs: Feed placeholders to the computation graph. outputs: Output tensors to fetch. updates: Additional update ops to be run at function call. name: a name to help users identify what this function does. """ def __init__( self , inputs, outputs, updates = None , name = None , * * session_kwargs): updates = updates or [] if not isinstance (inputs, ( list , tuple )): raise TypeError( '`inputs` to a TensorFlow backend function ' 'should be a list or tuple.' ) if not isinstance (outputs, ( list , tuple )): raise TypeError( '`outputs` of a TensorFlow backend function ' 'should be a list or tuple.' ) if not isinstance (updates, ( list , tuple )): raise TypeError( '`updates` in a TensorFlow backend function ' 'should be a list or tuple.' ) self .inputs = list (inputs) self .outputs = list (outputs) with ops.control_dependencies( self .outputs): updates_ops = [] for update in updates: if isinstance (update, tuple ): p, new_p = update updates_ops.append(state_ops.assign(p, new_p)) else : # assumed already an op updates_ops.append(update) self .updates_op = control_flow_ops.group( * updates_ops) self .name = name self .session_kwargs = session_kwargs def __call__( self , inputs): if not isinstance (inputs, ( list , tuple )): raise TypeError( '`inputs` should be a list or tuple.' ) feed_dict = {} for tensor, value in zip ( self .inputs, inputs): if is_sparse(tensor): sparse_coo = value.tocoo() indices = np.concatenate((np.expand_dims(sparse_coo.row, 1 ), np.expand_dims(sparse_coo.col, 1 )), 1 ) value = (indices, sparse_coo.data, sparse_coo.shape) feed_dict[tensor] = value session = get_session() updated = session.run( self .outputs + [ self .updates_op], feed_dict = feed_dict, * * self .session_kwargs) return updated[: len ( self .outputs)] |
所以,function函数利用我们之前已经创建好的comuptation graph。遵循计算图,从输入到定义的输出。这也是为什么该函数经常用于提取中间层结果。
以上这篇keras K.function获取某层的输出操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_37974048/article/details/102727653