我就废话不多说了,大家还是直接看代码吧~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
import tensorflow as tf n1 = tf.constant( 2 ) n2 = tf.constant( 3 ) n3 = tf.constant( 4 ) def cond1(i, a, b): return i < n1 def cond2(i, a, b): return i < n2 def cond3(i, a, b): return i < n3 def body(i, a, b): return i + 1 , b, a + b i1, a1, b1 = tf.while_loop(cond1, body, ( 2 , 1 , 1 )) i2, a2, b2 = tf.while_loop(cond2, body, ( 2 , 1 , 1 )) i3, a3, b3 = tf.while_loop(cond3, body, ( 2 , 1 , 1 )) sess = tf.Session() print (sess.run(i1)) print (sess.run(a1)) print (sess.run(b1)) print ( "-" ) print (sess.run(i2)) print (sess.run(a2)) print (sess.run(b2)) print ( "-" ) print (sess.run(i3)) print (sess.run(a3)) print (sess.run(b3)) |
print结果:
1
2
3
4
5
6
7
8
9
10
11
|
2 1 1 - 3 1 2 - 4 2 3 |
可见body函数返回的三个变量又传给了body
补充知识:tensorflow在tf.while_loop循环(非一般循环)中使用操纵变量该怎么做
代码(操纵全局变量)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
xiaojie = 1 i = tf.constant( 0 ,dtype = tf.int32) batch_len = tf.constant( 10 ,dtype = tf.int32) loop_cond = lambda a,b: tf.less(a,batch_len) #yy=tf.Print(batch_len,[batch_len],"batch_len:") yy = tf.constant( 0 ) loop_vars = [i,yy] def _recurrence(i,yy): c = tf.constant( 2 ,dtype = tf.int32) x = tf.multiply(i,c) global xiaojie xiaojie = xiaojie + 1 print_info = tf. Print (x,[x], "x:" ) yy = yy + print_info i = tf.add(i, 1 ) # print (xiaojie) return i,yy i,yy = tf.while_loop(loop_cond,_recurrence,loop_vars,parallel_iterations = 1 ) #可以批处理 sess = tf.Session() print (sess.run(i)) print (xiaojie) |
输出的是10和2。
也就是xiaojie只被修改了一次。
这个时候,在_recurrence循环体中添加语句
print (xiaojie)
会输出2。而且只输出一次。具体为什么,最后总结的时候再解释。
代码(操纵类成员变量)class RNN_Model():
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
def __init__( self ): self .xiaojie = 1 def test_RNN( self ): i = tf.constant( 0 ,dtype = tf.int32) batch_len = tf.constant( 10 ,dtype = tf.int32) loop_cond = lambda a,b: tf.less(a,batch_len) #yy=tf.Print(batch_len,[batch_len],"batch_len:") yy = tf.constant( 0 ) loop_vars = [i,yy] def _recurrence(i,yy): c = tf.constant( 2 ,dtype = tf.int32) x = tf.multiply(i,c) self .xiaojie = self .xiaojie + 1 print_info = tf. Print (x,[x], "x:" ) yy = yy + print_info i = tf.add(i, 1 ) print ( "_recurrence:" , self .xiaojie) return i,yy i,yy = tf.while_loop(loop_cond,_recurrence,loop_vars,parallel_iterations = 1 ) #可以批处理 sess = tf.Session() sess.run(yy) print ( self .xiaojie) if __name__ = = "__main__" : model = RNN_Model() #构建树,并且构建词典 model.test_RNN() |
输出是:
1
2
3
|
_recurrence: 2 10 2 |
tf.while_loop操纵全局变量和类成员变量总结
为什么_recurrence中定义的print操作只执行一次呢,这是因为_recurrence中的print相当于一种对代码的定义,直接在定义的过程中就执行了。所以,可以看到输出是在sess.run之前的。但是,定义的其它操作就是数据流图中的操作,需要在sess.run中执行。
就必须在sess.run中执行。但是,全局变量xiaojie也好,还是类成员变量xiaojie也好。其都不是图中的内容。因此,tf.while_loop执行的是tensorflow计算图中的循环,对于不是在计算图中的,就不会参与循环。注意:而且必须是与loop_vars中指定的变量存在数据依赖关系的tensor才可以!此外,即使是依赖关系,也必须是_recurrence循环体中return出的变量,才会真正的变化。比如,见下面的self.L。总之,想操纵变量,就要传入loop_vars!
如果对一个变量没有修改,就可以直接在循环中以操纵类成员变量或者全局变量的方式只读。
self.L与loop_vars中变量有依赖关系,但是并没有真正被修改。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
#IIII通过计算将非叶子节点的词向量也放入nodes_tensor中。 iiii = tf.constant( 0 ,dtype = tf.int32) loop____cond = lambda a,b,c,d,e: tf.less(a, self .sentence_length - 1 ) #iiii的范围是0到sl-2。注意,不包括sl-1。这是因为只需要计算sentence_length-1次,就能构建出一颗树 loop____vars = [iiii,columnLinesOfL,node_tensors_cost_tensor,nodes_tensor,tfPrint] def ____recurrence(iiii,columnLinesOfL,node_tensors_cost_tensor,nodes_tensor,tfPrint): #循环的目的是实现Greedy算法 ### #Greedy的主要目标就是确立树结构。 ### c1 = self .L[:, 0 :columnLinesOfL - 1 ] #这段代码是从RvNN的matlab的源码中复制过来的,但是Matlab的下标是从1开始,并且Matlab中1:2就是1和2,而python中1:2表示的是1,不包括2,所以,有很大的不同。 c2 = self .L[:, 1 :columnLinesOfL] c = tf.concat([c1,c2],axis = 0 ) p = tf.tanh(tf.matmul( self .W1,c) + tf.tile( self .b1,[ 1 ,columnLinesOfL - 1 ])) p_normalization = self .normalization(p) y = tf.tanh(tf.matmul( self .U,p_normalization) + tf.tile( self .bs,[ 1 ,columnLinesOfL - 1 ])) #根据Matlab中的源码来的,即重构后,也有一个激活的过程。 #将Y矩阵拆分成上下部分之后,再分别进行标准化。 columnlines_y = columnLinesOfL - 1 (y1,y2) = self .split_by_row(y,columnlines_y) y1_normalization = self .normalization(y1) y2_normalization = self .normalization(y2) #论文中提出一种计算重构误差时要考虑的权重信息。具体见论文,这里暂时不实现。 #这个权重是可以修改的。 alpha_cat = 1 bcat = 1 #计算重构误差矩阵 ## constant1=tf.constant([[1.0,2.0,3.0],[4.0,5.0,6.0],[7.0,8.0,9.0]]) ## constant2=tf.constant([[1.0,2.0,3.0],[1.0,4.0,2.0],[1.0,6.0,1.0]]) ## constructionErrorMatrix=self.constructionError(constant1,constant2,alpha_cat,bcat) y1c1 = tf.subtract(y1_normalization,c1) y2c2 = tf.subtract(y2_normalization,c2) constructionErrorMatrix = self .constructionError(y1c1,y2c2,alpha_cat,bcat) ################################################################################ print_info = tf. Print (iiii,[iiii], "\niiii:" ) #专门为了调试用,输出相关信息。 tfPrint = print_info + tfPrint print_info = tf. Print (columnLinesOfL,[columnLinesOfL], "\nbefore modify. columnLinesOfL:" ) #专门为了调试用,输出相关信息。 tfPrint = print_info + tfPrint print_info = tf. Print (constructionErrorMatrix,[constructionErrorMatrix], "\nbefore modify. constructionErrorMatrix:" ,summarize = 100 ) #专门为了调试用,输出相关信息。 tfPrint = tf.to_int32(print_info[ 0 ]) + tfPrint #一种不断输出tf.Print的方式,注意tf.Print的返回值。 ################################################################################ J_minpos = tf.to_int32(tf.argmin(constructionErrorMatrix)) #如果不转换的话,下面调用delete_one_column中,会调用tf.slice,之后tf.slice的参数中的类型必须是一样的。 J_min = constructionErrorMatrix[J_minpos] #一共要进行sl-1次循环。因为是从sl个叶子节点,两两结合sl-1次,才能形成一颗完整的树,而且是采用Greedy的方式。 #所以,需要为下次循环做准备。 #第一步,从该sentence的词向量矩阵中删除第J_minpos+1列,因为第J_minpos和第J_minpos+1列对应的单词要合并为一个新的节点,这里就是修改L ################################################################################ print_info = tf. Print ( self .L,[ self .L[ 0 ]], "\nbefore modify. L row 0:" ,summarize = 100 ) #专门为了调试用,输出相关信息。 tfPrint = tf.to_int32(print_info[ 0 ][ 0 ]) + tfPrint print_info = tf. Print ( self .L,[tf.shape( self .L)], "\nbefore modify. L shape:" ) #专门为了调试用,输出相关信息。 tfPrint = tf.to_int32(print_info[ 0 ][ 0 ]) + tfPrint ################################################################################ deleteColumnIndex = J_minpos + 1 self .L = self .delete_one_column( self .L,deleteColumnIndex, self .numlinesOfL,columnLinesOfL) columnLinesOfL = tf.subtract(columnLinesOfL, 1 ) #列数减去1. ################################################################################ print_info = tf. Print (deleteColumnIndex,[deleteColumnIndex], "\nbefore modify. deleteColumnIndex:" ) #专门为了调试用,输出相关信息。 tfPrint = print_info + tfPrint print_info = tf. Print ( self .L,[ self .L[ 0 ]], "\nafter modify. L row 0:" ,summarize = 100 ) #专门为了调试用,输出相关信息。 tfPrint = tf.to_int32(print_info[ 0 ][ 0 ]) + tfPrint print_info = tf. Print ( self .L,[tf.shape( self .L)], "\nafter modify. L shape:" ) #专门为了调试用,输出相关信息。 tfPrint = tf.to_int32(print_info[ 0 ][ 0 ]) + tfPrint print_info = tf. Print (columnLinesOfL,[columnLinesOfL], "\nafter modify. columnLinesOfL:" ) #专门为了调试用,输出相关信息。 tfPrint = print_info + tfPrint ################################################################################ #第二步,将新的词向量赋值给第J_minpos列 columnTensor = p_normalization[:,J_minpos] new_column_tensor = tf.expand_dims(columnTensor, 1 ) self .L = self .modify_one_column( self .L,new_column_tensor,J_minpos, self .numlinesOfL,columnLinesOfL) #第三步,同时将新的非叶子节点的词向量存入nodes_tensor modified_index_tensor = tf.to_int32(tf.add(iiii, self .sentence_length)) nodes_tensor = self .modify_one_column(nodes_tensor,new_column_tensor,modified_index_tensor, self .numlines_tensor, self .numcolunms_tensor) #第四步:记录合并节点的最小损失,存入node_tensors_cost_tensor J_min_tensor = tf.expand_dims(tf.expand_dims(J_min, 0 ), 1 ) node_tensors_cost_tensor = self .modify_one_column(node_tensors_cost_tensor,J_min_tensor,iiii, self .numlines_tensor2, self .numcolunms_tensor2) ####进入下一次循环 iiii = tf.add(iiii, 1 ) print_info = tf. Print (J_minpos,[J_minpos,J_minpos + 1 ], "node:" ) #专门为了调试用,输出相关信息。 tfPrint = tfPrint + print_info # columnLinesOfL=tf.subtract(columnLinesOfL,1) #在上面的循环体中已经执行了,没有必要再执行。 return iiii,columnLinesOfL,node_tensors_cost_tensor,nodes_tensor,tfPrint iiii,columnLinesOfL,node_tensors_cost_tensor,nodes_tensor,tfPrint = tf.while_loop(loop____cond,____recurrence,loop____vars,parallel_iterations = 1 ) pass |
上述代码是Greedy算法,递归构建神经网络树结构。
但是程序出错了,后来不断的调试,才发现self.L虽然跟循环loop____vars中的变量有依赖关系,也就是在tf.while_loop进行循环的时候,也可以输出它的值。
但是,它每一次都无法真正意义上对self.L进行修改。会发现,每一次循环结束之后,进入下一次循环时,self.L仍然没有变化。
执行结果如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
before modify. columnLinesOfL:[ 31 ] iiii:[ 0 ] after modify. columnLinesOfL:[ 30 ] before modify. L shape:[ 300 31 ] before modify. L row 0 :[ 0.126693 - 0.013654 - 0.166731 - 0.13703 - 0.261395 0.11459 0.016001 0.016001 0.144603 0.05588 0.171787 0.016001 1.064545 0.144603 0.130615 - 0.13703 - 0.261395 1.064545 - 0.261395 0.144603 0.036626 1.064545 0.188871 0.201198 0.05588 0.203795 0.201198 0.03536 0.089345 0.083778 0.103635 ] node:[ 0 ][ 1 ] before modify. constructionErrorMatrix:[ 3.0431733686706206 11.391056715427794 19.652819956115856 13.713453313903868 11.625973829805879 12.827533320819564 9.7513513723204746 13.009151292890811 13.896089243289065 10.649829109971648 9.45239374745086 15.704486086921641 18.274065790781862 12.447866299915024 15.302996103637689 13.713453313903868 14.295549844738751 13.779406175789358 11.625212314259059 16.340507223201449 19.095964364689717 15.10149194936319 11.989443162329437 13.436654650354058 11.120373311110505 12.39345317975002 13.568052800712424 10.998430341124633 8.3223909323599869 6.8896857405641851 ] after modify. L shape:[ 300 30 ] after modify. L row 0 :[ 0.126693 - 0.166731 - 0.13703 - 0.261395 0.11459 0.016001 0.016001 0.144603 0.05588 0.171787 0.016001 1.064545 0.144603 0.130615 - 0.13703 - 0.261395 1.064545 - 0.261395 0.144603 0.036626 1.064545 0.188871 0.201198 0.05588 0.203795 0.201198 0.03536 0.089345 0.083778 0.103635 ] before modify. deleteColumnIndex:[ 1 ] before modify. columnLinesOfL:[ 30 ] iiii:[ 1 ] before modify. L shape:[ 300 31 ] after modify. columnLinesOfL:[ 29 ] before modify. L row 0 :[ 0.126693 - 0.013654 - 0.166731 - 0.13703 - 0.261395 0.11459 0.016001 0.016001 0.144603 0.05588 0.171787 0.016001 1.064545 0.144603 0.130615 - 0.13703 - 0.261395 1.064545 - 0.261395 0.144603 0.036626 1.064545 0.188871 0.201198 0.05588 0.203795 0.201198 0.03536 0.089345 0.083778 0.103635 ] before modify. deleteColumnIndex:[ 1 ] node:[ 0 ][ 1 ] before modify. constructionErrorMatrix:[ 3.0431733686706206 11.391056715427794 19.652819956115856 13.713453313903868 11.625973829805879 12.827533320819564 9.7513513723204746 13.009151292890811 13.896089243289065 10.649829109971648 9.45239374745086 15.704486086921641 18.274065790781862 12.447866299915024 15.302996103637689 13.713453313903868 14.295549844738751 13.779406175789358 11.625212314259059 16.340507223201449 19.095964364689717 15.10149194936319 11.989443162329437 13.436654650354058 11.120373311110505 12.39345317975002 13.568052800712424 10.998430341124633 8.3223909323599869 ] after modify. L shape:[ 300 29 ] after modify. L row 0 :[ 0.126693 - 0.166731 - 0.13703 - 0.261395 0.11459 0.016001 0.016001 0.144603 0.05588 0.171787 0.016001 1.064545 0.144603 0.130615 - 0.13703 - 0.261395 1.064545 - 0.261395 0.144603 0.036626 1.064545 0.188871 0.201198 0.05588 0.203795 0.201198 0.03536 0.089345 0.083778 ] before modify. columnLinesOfL:[ 29 ] iiii:[ 2 ] |
后面那个after modify时L shape为[300 29]的原因是:执行
self.L=self.modify_one_column(self.L,new_column_tensor,J_minpos,self.numlinesOfL,columnLinesOfL)
时,columnLinesOfL是循环loop____vars中的变量,因此会随着每次循环发生变化,我写的modify_one_column见我的博文“修改tensor张量矩阵的某一列”。它决定了
修改后tensor的维度。
但是,无论如何,每一次循环,都是
before modify. L shape:[300 31]
说明self.L在循环体中虽然被修改了。但是下次循环又会被重置为初始值。
以上这篇基于tensorflow for循环 while循环案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/guotong1988/article/details/78212418