这是后期补充的部分,和前期的代码不太一样
效果图
源代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
/ / 测试 void CCutImageVS2013Dlg::OnBnClickedTestButton1() { vector<vector<Point> > contours; / / 轮廓数组 vector<Point2d> centers; / / 轮廓质心坐标 vector<vector<Point> >::iterator itr; / / 轮廓迭代器 vector<Point2d>::iterator itrc; / / 质心坐标迭代器 vector<vector<Point> > con; / / 当前轮廓 double area; double minarea = 1000 ; double maxarea = 0 ; Moments mom; / / 轮廓矩 Mat image, gray, edge, dst; image = imread( "D:\\66.png" ); cvtColor(image, gray, COLOR_BGR2GRAY); Mat rgbImg(gray.size(), CV_8UC3); / / 创建三通道图 blur(gray, edge, Size( 3 , 3 )); / / 模糊去噪 threshold(edge, edge, 200 , 255 , THRESH_BINARY_INV); / / 二值化处理,黑底白字 / / - - - - - - - - 去除较小轮廓,并寻找最大轮廓 - - - - - - - - - - - - - - - - - - - - - - - - - - findContours(edge, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); / / 寻找轮廓 itr = contours.begin(); / / 使用迭代器去除噪声轮廓 while (itr ! = contours.end()) { area = contourArea( * itr); / / 获得轮廓面积 if (area<minarea) / / 删除较小面积的轮廓 { itr = contours.erase(itr); / / itr一旦erase,需要重新赋值 } else { itr + + ; } if (area>maxarea) / / 寻找最大轮廓 { maxarea = area; } } dst = Mat::zeros(image.rows, image.cols, CV_8UC3); / * 绘制连通区域轮廓,计算质心坐标 * / Point2d center; itr = contours.begin(); while (itr ! = contours.end()) { area = contourArea( * itr); con.push_back( * itr); / / 获取当前轮廓 if (area = = maxarea) { vector<Rect> boundRect( 1 ); / / 定义外接矩形集合 boundRect[ 0 ] = boundingRect(Mat( * itr)); cvtColor(gray, rgbImg, COLOR_GRAY2BGR); Rect select; select.x = boundRect[ 0 ].x; select.y = boundRect[ 0 ].y; select.width = boundRect[ 0 ].width; select.height = boundRect[ 0 ].height; rectangle(rgbImg, select, Scalar( 0 , 255 , 0 ), 3 , 2 ); / / 用矩形画矩形窗 drawContours(dst, con, - 1 , Scalar( 0 , 0 , 255 ), 2 ); / / 最大面积红色绘制 } else drawContours(dst, con, - 1 , Scalar( 255 , 0 , 0 ), 2 ); / / 其它面积蓝色绘制 con.pop_back(); / / 计算质心 mom = moments( * itr); center.x = ( int )(mom.m10 / mom.m00); center.y = ( int )(mom.m01 / mom.m00); centers.push_back(center); itr + + ; } imshow( "rgbImg" , rgbImg); / / imshow( "gray" , gray); / / imshow( "edge" , edge); imshow( "origin" , image); imshow( "connected_region" , dst); waitKey( 0 ); return ; } |
前期做的,方法可能不太一样
一,先看效果图
原图
处理前后图
二,实现源代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
/ / = = = = = = = 函数实现 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = void RemoveSmallRegion(Mat &Src, Mat &Dst, int AreaLimit, int CheckMode, int NeihborMode) { int RemoveCount = 0 ; / / 新建一幅标签图像初始化为 0 像素点,为了记录每个像素点检验状态的标签, 0 代表未检查, 1 代表正在检查, 2 代表检查不合格(需要反转颜色), 3 代表检查合格或不需检查 / / 初始化的图像全部为 0 ,未检查 Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1); if (CheckMode = = 1 ) / / 去除小连通区域的白色点 { / / cout << "去除小连通域." ; for ( int i = 0 ; i < Src.rows; i + + ) { for ( int j = 0 ; j < Src.cols; j + + ) { if (Src.at<uchar>(i, j) < 10 ) { PointLabel.at<uchar>(i, j) = 3 ; / / 将背景黑色点标记为合格,像素为 3 } } } } else / / 去除孔洞,黑色点像素 { / / cout << "去除孔洞" ; for ( int i = 0 ; i < Src.rows; i + + ) { for ( int j = 0 ; j < Src.cols; j + + ) { if (Src.at<uchar>(i, j) > 10 ) { PointLabel.at<uchar>(i, j) = 3 ; / / 如果原图是白色区域,标记为合格,像素为 3 } } } } vector<Point2i>NeihborPos; / / 将邻域压进容器 NeihborPos.push_back(Point2i( - 1 , 0 )); NeihborPos.push_back(Point2i( 1 , 0 )); NeihborPos.push_back(Point2i( 0 , - 1 )); NeihborPos.push_back(Point2i( 0 , 1 )); if (NeihborMode = = 1 ) { / / cout << "Neighbor mode: 8邻域." << endl; NeihborPos.push_back(Point2i( - 1 , - 1 )); NeihborPos.push_back(Point2i( - 1 , 1 )); NeihborPos.push_back(Point2i( 1 , - 1 )); NeihborPos.push_back(Point2i( 1 , 1 )); } else int a = 0 ; / / cout << "Neighbor mode: 4邻域." << endl; int NeihborCount = 4 + 4 * NeihborMode; int CurrX = 0 , CurrY = 0 ; / / 开始检测 for ( int i = 0 ; i < Src.rows; i + + ) { for ( int j = 0 ; j < Src.cols; j + + ) { if (PointLabel.at<uchar>(i, j) = = 0 ) / / 标签图像像素点为 0 ,表示还未检查的不合格点 { / / 开始检查 vector<Point2i>GrowBuffer; / / 记录检查像素点的个数 GrowBuffer.push_back(Point2i(j, i)); PointLabel.at<uchar>(i, j) = 1 ; / / 标记为正在检查 int CheckResult = 0 ; for ( int z = 0 ; z < GrowBuffer.size(); z + + ) { for ( int q = 0 ; q < NeihborCount; q + + ) { CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x; CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y; if (CurrX > = 0 && CurrX<Src.cols&&CurrY > = 0 && CurrY<Src.rows) / / 防止越界 { if (PointLabel.at<uchar>(CurrY, CurrX) = = 0 ) { GrowBuffer.push_back(Point2i(CurrX, CurrY)); / / 邻域点加入 buffer PointLabel.at<uchar>(CurrY, CurrX) = 1 ; / / 更新邻域点的检查标签,避免重复检查 } } } } if (GrowBuffer.size()>AreaLimit) / / 判断结果(是否超出限定的大小), 1 为未超出, 2 为超出 CheckResult = 2 ; else { CheckResult = 1 ; RemoveCount + + ; / / 记录有多少区域被去除 } for ( int z = 0 ; z < GrowBuffer.size(); z + + ) { CurrX = GrowBuffer.at(z).x; CurrY = GrowBuffer.at(z).y; PointLabel.at<uchar>(CurrY, CurrX) + = CheckResult; / / 标记不合格的像素点,像素值为 2 } / / * * * * * * * * 结束该点处的检查 * * * * * * * * * * } } } CheckMode = 255 * ( 1 - CheckMode); / / 开始反转面积过小的区域 for ( int i = 0 ; i < Src.rows; + + i) { for ( int j = 0 ; j < Src.cols; + + j) { if (PointLabel.at<uchar>(i, j) = = 2 ) { Dst.at<uchar>(i, j) = CheckMode; } else if (PointLabel.at<uchar>(i, j) = = 3 ) { Dst.at<uchar>(i, j) = Src.at<uchar>(i, j); } } } / / cout << RemoveCount << " objects removed." << endl; } / / = = = = = = = 函数实现 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = / / = = = = = = = 调用函数 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Mat img; img = imread( "D:\\1_1.jpg" , 0 ); / / 读取图片 threshold(img, img, 128 , 255 , CV_THRESH_BINARY_INV); imshow( "去除前" , img); Mat img1; RemoveSmallRegion(img, img, 200 , 0 , 1 ); imshow( "去除后" , img); waitKey( 0 ); / / = = = = = = = 调用函数 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = |
以上这篇使用OpenCV去除面积较小的连通域就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/sxlsxl119/article/details/80493655