多分类一种比较常用的做法是在最后一层加softmax归一化,值最大的维度所对应的位置则作为该样本对应的类。本文采用PyTorch框架,选用经典图像数据集mnist学习一波多分类。
MNIST数据集
MNIST 数据集(手写数字数据集)来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据。MNIST数据集下载地址:http://yann.lecun.com/exdb/mnist/。手写数字的MNIST数据库包括60,000个的训练集样本,以及10,000个测试集样本。
其中:
train-images-idx3-ubyte.gz (训练数据集图片)
train-labels-idx1-ubyte.gz (训练数据集标记类别)
t10k-images-idx3-ubyte.gz: (测试数据集)
t10k-labels-idx1-ubyte.gz(测试数据集标记类别)
MNIST数据集是经典图像数据集,包括10个类别(0到9)。每一张图片拉成向量表示,如下图784维向量作为第一层输入特征。
Softmax分类
softmax函数的本质就是将一个K 维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0,1)之间,并且压缩后的K个值相加等于1(变成了概率分布)。在选用Softmax做多分类时,可以根据值的大小来进行多分类的任务,如取权重最大的一维。softmax介绍和公式网上很多,这里不介绍了。下面使用Pytorch定义一个多层网络(4个隐藏层,最后一层softmax概率归一化),输出层为10正好对应10类。
PyTorch实战
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable # Training settings batch_size = 64 # MNIST Dataset train_dataset = datasets.MNIST(root = './mnist_data/' , train = True , transform = transforms.ToTensor(), download = True ) test_dataset = datasets.MNIST(root = './mnist_data/' , train = False , transform = transforms.ToTensor()) # Data Loader (Input Pipeline) train_loader = torch.utils.data.DataLoader(dataset = train_dataset, batch_size = batch_size, shuffle = True ) test_loader = torch.utils.data.DataLoader(dataset = test_dataset, batch_size = batch_size, shuffle = False ) class Net(nn.Module): def __init__( self ): super (Net, self ).__init__() self .l1 = nn.Linear( 784 , 520 ) self .l2 = nn.Linear( 520 , 320 ) self .l3 = nn.Linear( 320 , 240 ) self .l4 = nn.Linear( 240 , 120 ) self .l5 = nn.Linear( 120 , 10 ) def forward( self , x): # Flatten the data (n, 1, 28, 28) --> (n, 784) x = x.view( - 1 , 784 ) x = F.relu( self .l1(x)) x = F.relu( self .l2(x)) x = F.relu( self .l3(x)) x = F.relu( self .l4(x)) return F.log_softmax( self .l5(x), dim = 1 ) #return self.l5(x) model = Net() optimizer = optim.SGD(model.parameters(), lr = 0.01 , momentum = 0.5 ) def train(epoch): # 每次输入barch_idx个数据 for batch_idx, (data, target) in enumerate (train_loader): data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) # loss loss = F.nll_loss(output, target) loss.backward() # update optimizer.step() if batch_idx % 200 = = 0 : print ( 'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}' . format ( epoch, batch_idx * len (data), len (train_loader.dataset), 100. * batch_idx / len (train_loader), loss.data[ 0 ])) def test(): test_loss = 0 correct = 0 # 测试集 for data, target in test_loader: data, target = Variable(data, volatile = True ), Variable(target) output = model(data) # sum up batch loss test_loss + = F.nll_loss(output, target).data[ 0 ] # get the index of the max pred = output.data. max ( 1 , keepdim = True )[ 1 ] correct + = pred.eq(target.data.view_as(pred)).cpu(). sum () test_loss / = len (test_loader.dataset) print ( '\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n' . format ( test_loss, correct, len (test_loader.dataset), 100. * correct / len (test_loader.dataset))) for epoch in range ( 1 , 6 ): train(epoch) test() 输出结果: Train Epoch: 1 [ 0 / 60000 ( 0 % )] Loss: 2.292192 Train Epoch: 1 [ 12800 / 60000 ( 21 % )] Loss: 2.289466 Train Epoch: 1 [ 25600 / 60000 ( 43 % )] Loss: 2.294221 Train Epoch: 1 [ 38400 / 60000 ( 64 % )] Loss: 2.169656 Train Epoch: 1 [ 51200 / 60000 ( 85 % )] Loss: 1.561276 Test set : Average loss: 0.0163 , Accuracy: 6698 / 10000 ( 67 % ) Train Epoch: 2 [ 0 / 60000 ( 0 % )] Loss: 0.993218 Train Epoch: 2 [ 12800 / 60000 ( 21 % )] Loss: 0.859608 Train Epoch: 2 [ 25600 / 60000 ( 43 % )] Loss: 0.499748 Train Epoch: 2 [ 38400 / 60000 ( 64 % )] Loss: 0.422055 Train Epoch: 2 [ 51200 / 60000 ( 85 % )] Loss: 0.413933 Test set : Average loss: 0.0065 , Accuracy: 8797 / 10000 ( 88 % ) Train Epoch: 3 [ 0 / 60000 ( 0 % )] Loss: 0.465154 Train Epoch: 3 [ 12800 / 60000 ( 21 % )] Loss: 0.321842 Train Epoch: 3 [ 25600 / 60000 ( 43 % )] Loss: 0.187147 Train Epoch: 3 [ 38400 / 60000 ( 64 % )] Loss: 0.469552 Train Epoch: 3 [ 51200 / 60000 ( 85 % )] Loss: 0.270332 Test set : Average loss: 0.0045 , Accuracy: 9137 / 10000 ( 91 % ) Train Epoch: 4 [ 0 / 60000 ( 0 % )] Loss: 0.197497 Train Epoch: 4 [ 12800 / 60000 ( 21 % )] Loss: 0.234830 Train Epoch: 4 [ 25600 / 60000 ( 43 % )] Loss: 0.260302 Train Epoch: 4 [ 38400 / 60000 ( 64 % )] Loss: 0.219375 Train Epoch: 4 [ 51200 / 60000 ( 85 % )] Loss: 0.292754 Test set : Average loss: 0.0037 , Accuracy: 9277 / 10000 ( 93 % ) Train Epoch: 5 [ 0 / 60000 ( 0 % )] Loss: 0.183354 Train Epoch: 5 [ 12800 / 60000 ( 21 % )] Loss: 0.207930 Train Epoch: 5 [ 25600 / 60000 ( 43 % )] Loss: 0.138435 Train Epoch: 5 [ 38400 / 60000 ( 64 % )] Loss: 0.120214 Train Epoch: 5 [ 51200 / 60000 ( 85 % )] Loss: 0.266199 Test set : Average loss: 0.0026 , Accuracy: 9506 / 10000 ( 95 % ) Process finished with exit code 0 |
随着训练迭代次数的增加,测试集的精确度还是有很大提高的。并且当迭代次数为5时,使用这种简单的网络可以达到95%的精确度。
以上这篇PyTorch: Softmax多分类实战操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/m0_37306360/article/details/79309849