服务器之家

服务器之家 > 正文

Python 执行矩阵与线性代数运算

时间:2020-08-01 23:33     来源/作者:David Beazley

问题

你需要执行矩阵和线性代数运算,比如矩阵乘法、寻找行列式、求解线性方程组等等。

解决方案

NumPy 库有一个矩阵对象可以用来解决这个问题。
矩阵类似于3.9小节中数组对象,但是遵循线性代数的计算规则。下面的一个例子展示了矩阵的一些基本特性:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
>>> import numpy as np
>>> m = np.matrix([[1,-2,3],[0,4,5],[7,8,-9]])
>>> m
matrix([[ 1, -2, 3],
    [ 0, 4, 5],
    [ 7, 8, -9]])
 
>>> # Return transpose
>>> m.T
matrix([[ 1, 0, 7],
    [-2, 4, 8],
    [ 3, 5, -9]])
 
>>> # Return inverse
>>> m.I
matrix([[ 0.33043478, -0.02608696, 0.09565217],
    [-0.15217391, 0.13043478, 0.02173913],
    [ 0.12173913, 0.09565217, -0.0173913 ]])
 
>>> # Create a vector and multiply
>>> v = np.matrix([[2],[3],[4]])
>>> v
matrix([[2],
    [3],
    [4]])
>>> m * v
matrix([[ 8],
    [32],
    [ 2]])
>>>

可以在 numpy.linalg 子包中找到更多的操作函数,比如:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
>>> import numpy.linalg
 
>>> # Determinant
>>> numpy.linalg.det(m)
-229.99999999999983
 
>>> # Eigenvalues
>>> numpy.linalg.eigvals(m)
array([-13.11474312, 2.75956154, 6.35518158])
 
>>> # Solve for x in mx = v
>>> x = numpy.linalg.solve(m, v)
>>> x
matrix([[ 0.96521739],
    [ 0.17391304],
    [ 0.46086957]])
>>> m * x
matrix([[ 2.],
    [ 3.],
    [ 4.]])
>>> v
matrix([[2],
    [3],
    [4]])
>>>

讨论

很显然线性代数是个非常大的主题,已经超出了本书能讨论的范围。 但是,如果你需要操作数组和向量的话, NumPy 是一个不错的入口点。 可以访问 NumPy 官网 http://www.numpy.org 获取更多信息。

以上就是Python 执行矩阵与线性代数运算的详细内容,更多关于Python 矩阵与线性代数运算的资料请关注服务器之家其它相关文章!

原文链接:https://python3-cookbook.readthedocs.io/zh_CN/latest/c03/p10_matrix_and_linear_algebra_calculation.html

相关文章

热门资讯

2022年最旺的微信头像大全 微信头像2022年最新版图片
2022年最旺的微信头像大全 微信头像2022年最新版图片 2022-01-10
蜘蛛侠3英雄无归3正片免费播放 蜘蛛侠3在线观看免费高清完整
蜘蛛侠3英雄无归3正片免费播放 蜘蛛侠3在线观看免费高清完整 2021-08-24
背刺什么意思 网络词语背刺是什么梗
背刺什么意思 网络词语背刺是什么梗 2020-05-22
yue是什么意思 网络流行语yue了是什么梗
yue是什么意思 网络流行语yue了是什么梗 2020-10-11
暖暖日本高清免费中文 暖暖在线观看免费完整版韩国
暖暖日本高清免费中文 暖暖在线观看免费完整版韩国 2021-05-08
返回顶部