这里我们通过请求网页例子来一步步理解爬虫性能
当我们有一个列表存放了一些url需要我们获取相关数据,我们首先想到的是循环
简单的循环串行
这一种方法相对来说是最慢的,因为一个一个循环,耗时是最长的,是所有的时间总和
代码如下:
1
2
3
4
5
6
7
8
9
10
11
|
import requests url_list = [ 'http://www.baidu.com' , 'http://www.pythonsite.com' , 'http://www.cnblogs.com/' ] for url in url_list: result = requests.get(url) print (result.text) |
通过线程池
通过线程池的方式访问,这样整体的耗时是所有连接里耗时最久的那个,相对循环来说快了很多
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
import requests from concurrent.futures import ThreadPoolExecutor def fetch_request(url): result = requests.get(url) print (result.text) url_list = [ 'http://www.baidu.com' , 'http://www.bing.com' , 'http://www.cnblogs.com/' ] pool = ThreadPoolExecutor( 10 ) for url in url_list: #去线程池中获取一个线程,线程去执行fetch_request方法 pool.submit(fetch_request,url) pool.shutdown( True ) |
线程池+回调函数
这里定义了一个回调函数callback
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
from concurrent.futures import ThreadPoolExecutor import requests def fetch_async(url): response = requests.get(url) return response def callback(future): print (future.result().text) url_list = [ 'http://www.baidu.com' , 'http://www.bing.com' , 'http://www.cnblogs.com/' ] pool = ThreadPoolExecutor( 5 ) for url in url_list: v = pool.submit(fetch_async,url) #这里调用回调函数 v.add_done_callback(callback) pool.shutdown() |
通过进程池
通过进程池的方式访问,同样的也是取决于耗时最长的,但是相对于线程来说,进程需要耗费更多的资源,同时这里是访问url时IO操作,所以这里线程池比进程池更好
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
import requests from concurrent.futures import ProcessPoolExecutor def fetch_request(url): result = requests.get(url) print (result.text) url_list = [ 'http://www.baidu.com' , 'http://www.bing.com' , 'http://www.cnblogs.com/' ] pool = ProcessPoolExecutor( 10 ) for url in url_list: #去进程池中获取一个线程,子进程程去执行fetch_request方法 pool.submit(fetch_request,url) pool.shutdown( True ) |
进程池+回调函数
这种方式和线程+回调函数的效果是一样的,相对来说开进程比开线程浪费资源
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
from concurrent.futures import ProcessPoolExecutor import requests def fetch_async(url): response = requests.get(url) return response def callback(future): print (future.result().text) url_list = [ 'http://www.baidu.com' , 'http://www.bing.com' , 'http://www.cnblogs.com/' ] pool = ProcessPoolExecutor( 5 ) for url in url_list: v = pool.submit(fetch_async, url) # 这里调用回调函数 v.add_done_callback(callback) pool.shutdown() |
主流的单线程实现并发的几种方式
- asyncio
- gevent
- Twisted
- Tornado
下面分别是这四种代码的实现例子:
asyncio例子1:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import asyncio @asyncio .coroutine #通过这个装饰器装饰 def func1(): print ( 'before...func1......' ) # 这里必须用yield from,并且这里必须是asyncio.sleep不能是time.sleep yield from asyncio.sleep( 2 ) print ( 'end...func1......' ) tasks = [func1(), func1()] loop = asyncio.get_event_loop() loop.run_until_complete(asyncio.gather( * tasks)) loop.close() |
上述的效果是同时会打印两个before的内容,然后等待2秒打印end内容
这里asyncio并没有提供我们发送http请求的方法,但是我们可以在yield from这里构造http请求的方法。
asyncio例子2:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
import asyncio @asyncio .coroutine def fetch_async(host, url = '/' ): print ( "----" ,host, url) reader, writer = yield from asyncio.open_connection(host, 80 ) #构造请求头内容 request_header_content = """GET %s HTTP/1.0\r\nHost: %s\r\n\r\n""" % (url, host,) request_header_content = bytes(request_header_content, encoding = 'utf-8' ) #发送请求 writer.write(request_header_content) yield from writer.drain() text = yield from reader.read() print (host, url, text) writer.close() tasks = [ fetch_async( 'www.cnblogs.com' , '/zhaof/' ), fetch_async( 'dig.chouti.com' , '/pic/show?nid=4073644713430508&lid=10273091' ) ] loop = asyncio.get_event_loop() results = loop.run_until_complete(asyncio.gather( * tasks)) loop.close() |
asyncio + aiohttp 代码例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
import aiohttp import asyncio @asyncio .coroutine def fetch_async(url): print (url) response = yield from aiohttp.request( 'GET' , url) print (url, response) response.close() tasks = [fetch_async( 'http://baidu.com/' ), fetch_async( 'http://www.chouti.com/' )] event_loop = asyncio.get_event_loop() results = event_loop.run_until_complete(asyncio.gather( * tasks)) event_loop.close() |
asyncio+requests代码例子
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
import asyncio import requests @asyncio .coroutine def fetch_async(func, * args): loop = asyncio.get_event_loop() future = loop.run_in_executor( None , func, * args) response = yield from future print (response.url, response.content) tasks = [ fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/' ), fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091' ) ] loop = asyncio.get_event_loop() results = loop.run_until_complete(asyncio.gather( * tasks)) loop.close() |
gevent+requests代码例子
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
import gevent import requests from gevent import monkey monkey.patch_all() def fetch_async(method, url, req_kwargs): print (method, url, req_kwargs) response = requests.request(method = method, url = url, * * req_kwargs) print (response.url, response.content) # ##### 发送请求 ##### gevent.joinall([ gevent.spawn(fetch_async, method = 'get' , url = 'https://www.python.org/' , req_kwargs = {}), gevent.spawn(fetch_async, method = 'get' , url = 'https://www.yahoo.com/' , req_kwargs = {}), gevent.spawn(fetch_async, method = 'get' , url = 'https://github.com/' , req_kwargs = {}), ]) # ##### 发送请求(协程池控制最大协程数量) ##### # from gevent.pool import Pool # pool = Pool(None) # gevent.joinall([ # pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}), # pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}), # pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}), # ]) |
grequests代码例子
这个是讲requests+gevent进行了封装
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import grequests request_list = [ grequests.get( 'http://httpbin.org/delay/1' , timeout = 0.001 ), grequests.get( 'http://fakedomain/' ), grequests.get( 'http://httpbin.org/status/500' ) ] # ##### 执行并获取响应列表 ##### # response_list = grequests.map(request_list) # print(response_list) # ##### 执行并获取响应列表(处理异常) ##### # def exception_handler(request, exception): # print(request,exception) # print("Request failed") # response_list = grequests.map(request_list, exception_handler=exception_handler) # print(response_list) |
twisted代码例子
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
#getPage相当于requets模块,defer特殊的返回值,rector是做事件循环 from twisted.web.client import getPage, defer from twisted.internet import reactor def all_done(arg): reactor.stop() def callback(contents): print (contents) deferred_list = [] url_list = [ 'http://www.bing.com' , 'http://www.baidu.com' , ] for url in url_list: deferred = getPage(bytes(url, encoding = 'utf8' )) deferred.addCallback(callback) deferred_list.append(deferred) #这里就是进就行一种检测,判断所有的请求知否执行完毕 dlist = defer.DeferredList(deferred_list) dlist.addBoth(all_done) reactor.run() |
tornado代码例子
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
from tornado.httpclient import AsyncHTTPClient from tornado.httpclient import HTTPRequest from tornado import ioloop def handle_response(response): """ 处理返回值内容(需要维护计数器,来停止IO循环),调用 ioloop.IOLoop.current().stop() :param response: :return: """ if response.error: print ( "Error:" , response.error) else : print (response.body) def func(): url_list = [ 'http://www.baidu.com' , 'http://www.bing.com' , ] for url in url_list: print (url) http_client = AsyncHTTPClient() http_client.fetch(HTTPRequest(url), handle_response) ioloop.IOLoop.current().add_callback(func) ioloop.IOLoop.current().start() |
以上就是Python 爬虫性能相关总结的详细内容,更多关于Python 爬虫性能的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/zhaof/p/7171148.html