安装Tornado
省事点可以直接用grequests库,下面用的是tornado的异步client。 异步用到了tornado,根据官方文档的例子修改得到一个简单的异步爬虫类。可以参考下最新的文档学习下。
pip install tornado
异步爬虫
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
#!/usr/bin/env python # -*- coding:utf-8 -*- import time from datetime import timedelta from tornado import httpclient, gen, ioloop, queues import traceback class AsySpider( object ): """A simple class of asynchronous spider.""" def __init__( self , urls, concurrency = 10 , * * kwargs): urls.reverse() self .urls = urls self .concurrency = concurrency self ._q = queues.Queue() self ._fetching = set () self ._fetched = set () def fetch( self , url, * * kwargs): fetch = getattr (httpclient.AsyncHTTPClient(), 'fetch' ) return fetch(url, * * kwargs) def handle_html( self , url, html): """handle html page""" print (url) def handle_response( self , url, response): """inherit and rewrite this method""" if response.code = = 200 : self .handle_html(url, response.body) elif response.code = = 599 : # retry self ._fetching.remove(url) self ._q.put(url) @gen .coroutine def get_page( self , url): try : response = yield self .fetch(url) print ( '######fetched %s' % url) except Exception as e: print ( 'Exception: %s %s' % (e, url)) raise gen.Return(e) raise gen.Return(response) @gen .coroutine def _run( self ): @gen .coroutine def fetch_url(): current_url = yield self ._q.get() try : if current_url in self ._fetching: return print ( 'fetching****** %s' % current_url) self ._fetching.add(current_url) response = yield self .get_page(current_url) self .handle_response(current_url, response) # handle reponse self ._fetched.add(current_url) for i in range ( self .concurrency): if self .urls: yield self ._q.put( self .urls.pop()) finally : self ._q.task_done() @gen .coroutine def worker(): while True : yield fetch_url() self ._q.put( self .urls.pop()) # add first url # Start workers, then wait for the work queue to be empty. for _ in range ( self .concurrency): worker() yield self ._q.join(timeout = timedelta(seconds = 300000 )) assert self ._fetching = = self ._fetched def run( self ): io_loop = ioloop.IOLoop.current() io_loop.run_sync( self ._run) class MySpider(AsySpider): def fetch( self , url, * * kwargs): """重写父类fetch方法可以添加cookies,headers,timeout等信息""" cookies_str = "PHPSESSID=j1tt66a829idnms56ppb70jri4; pspt=%7B%22id%22%3A%2233153%22%2C%22pswd%22%3A%228835d2c1351d221b4ab016fbf9e8253f%22%2C%22_code%22%3A%22f779dcd011f4e2581c716d1e1b945861%22%7D; key=%E9%87%8D%E5%BA%86%E5%95%84%E6%9C%A8%E9%B8%9F%E7%BD%91%E7%BB%9C%E7%A7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8; think_language=zh-cn; SERVERID=a66d7d08fa1c8b2e37dbdc6ffff82d9e|1444973193|1444967835; CNZZDATA1254842228=1433864393-1442810831-%7C1444972138" # 从浏览器拷贝cookie字符串 headers = { 'User-Agent' : 'mozilla/5.0 (compatible; baiduspider/2.0; +http://www.baidu.com/search/spider.html)' , 'cookie' : cookies_str } return super (MySpider, self ).fetch( # 参数参考tornado文档 url, headers = headers, request_timeout = 1 ) def handle_html( self , url, html): print (url, html) def main(): urls = [] for page in range ( 1 , 100 ): urls.append( 'http://www.baidu.com?page=%s' % page) s = MySpider(urls) s.run() if __name__ = = '__main__' : main() |
可以继承这个类,塞一些url进去,然后重写handle_page处理得到的页面。
异步+多进程爬虫
还可以再变态点,加个进程池,使用了multiprocessing模块。效率飕飕的,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
#!/usr/bin/env python # -*- coding:utf-8 -*- import time from multiprocessing import Pool from datetime import timedelta from tornado import httpclient, gen, ioloop, queues class AsySpider( object ): """A simple class of asynchronous spider.""" def __init__( self , urls, concurrency): urls.reverse() self .urls = urls self .concurrency = concurrency self ._q = queues.Queue() self ._fetching = set () self ._fetched = set () def handle_page( self , url, html): filename = url.rsplit( '/' , 1 )[ 1 ] with open (filename, 'w+' ) as f: f.write(html) @gen .coroutine def get_page( self , url): try : response = yield httpclient.AsyncHTTPClient().fetch(url) print ( '######fetched %s' % url) except Exception as e: print ( 'Exception: %s %s' % (e, url)) raise gen.Return('') raise gen.Return(response.body) @gen .coroutine def _run( self ): @gen .coroutine def fetch_url(): current_url = yield self ._q.get() try : if current_url in self ._fetching: return print ( 'fetching****** %s' % current_url) self ._fetching.add(current_url) html = yield self .get_page(current_url) self ._fetched.add(current_url) self .handle_page(current_url, html) for i in range ( self .concurrency): if self .urls: yield self ._q.put( self .urls.pop()) finally : self ._q.task_done() @gen .coroutine def worker(): while True : yield fetch_url() self ._q.put( self .urls.pop()) # Start workers, then wait for the work queue to be empty. for _ in range ( self .concurrency): worker() yield self ._q.join(timeout = timedelta(seconds = 300000 )) assert self ._fetching = = self ._fetched def run( self ): io_loop = ioloop.IOLoop.current() io_loop.run_sync( self ._run) def run_spider(beg, end): urls = [] for page in range (beg, end): urls.append( 'http://127.0.0.1/%s.htm' % page) s = AsySpider(urls, 10 ) s.run() def main(): _st = time.time() p = Pool() all_num = 73000 num = 4 # number of cpu cores per_num, left = divmod (all_num, num) s = range ( 0 , all_num, per_num) res = [] for i in range ( len (s) - 1 ): res.append((s[i], s[i + 1 ])) res.append((s[ len (s) - 1 ], all_num)) print res for i in res: p.apply_async(run_spider, args = (i[ 0 ], i[ 1 ],)) p.close() p.join() print time.time() - _st if __name__ = = '__main__' : main() |
多线程爬虫
线程池实现.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
#!/usr/bin/env python # -*- coding:utf-8 -*- import Queue import sys import requests import os import threading import time class Worker(threading.Thread): # 处理工作请求 def __init__( self , workQueue, resultQueue, * * kwds): threading.Thread.__init__( self , * * kwds) self .setDaemon( True ) self .workQueue = workQueue self .resultQueue = resultQueue def run( self ): while 1 : try : callable , args, kwds = self .workQueue.get( False ) # get task res = callable ( * args, * * kwds) self .resultQueue.put(res) # put result except Queue.Empty: break class WorkManager: # 线程池管理,创建 def __init__( self , num_of_workers = 10 ): self .workQueue = Queue.Queue() # 请求队列 self .resultQueue = Queue.Queue() # 输出结果的队列 self .workers = [] self ._recruitThreads(num_of_workers) def _recruitThreads( self , num_of_workers): for i in range (num_of_workers): worker = Worker( self .workQueue, self .resultQueue) # 创建工作线程 self .workers.append(worker) # 加入到线程队列 def start( self ): for w in self .workers: w.start() def wait_for_complete( self ): while len ( self .workers): worker = self .workers.pop() # 从池中取出一个线程处理请求 worker.join() if worker.isAlive() and not self .workQueue.empty(): self .workers.append(worker) # 重新加入线程池中 print 'All jobs were complete.' def add_job( self , callable , * args, * * kwds): self .workQueue.put(( callable , args, kwds)) # 向工作队列中加入请求 def get_result( self , * args, * * kwds): return self .resultQueue.get( * args, * * kwds) def download_file(url): #print 'beg download', url requests.get(url).text def main(): try : num_of_threads = int (sys.argv[ 1 ]) except : num_of_threads = 10 _st = time.time() wm = WorkManager(num_of_threads) print num_of_threads urls = [ 'http://www.baidu.com' ] * 1000 for i in urls: wm.add_job(download_file, i) wm.start() wm.wait_for_complete() print time.time() - _st if __name__ = = '__main__' : main() |
这三种随便一种都有很高的效率,但是这么跑会给网站服务器不小的压力,尤其是小站点,还是有点节操为好。