单例模式的实现方式
将类实例绑定到类变量上
1
2
3
4
5
6
7
|
class Singleton( object ): _instance = None def __new__( cls , * args): if not isinstance ( cls ._instance, cls ): cls ._instance = super (Singleton, cls ).__new__( cls , * args) return cls ._instance |
但是子类在继承后可以重写__new__以失去单例特性
1
2
3
4
|
class D(Singleton): def __new__( cls , * args): return super (D, cls ).__new__( cls , * args) |
使用装饰器实现
1
2
3
4
5
6
7
8
9
10
11
12
|
def singleton(_cls): inst = {} def getinstance( * args, * * kwargs): if _cls not in inst: inst[_cls] = _cls( * args, * * kwargs) return inst[_cls] return getinstance @singleton class MyClass( object ): pass |
问题是这样装饰以后返回的不是类而是函数,当然你可以singleton里定义一个类来解决问题,但这样就显得很麻烦了
使用__metaclass__,这个方式最推荐
1
2
3
4
5
6
7
8
9
10
11
|
class Singleton( type ): _inst = {} def __call__( cls , * args, * * kwargs): if cls not in cls ._inst: cls ._inst[ cls ] = super (Singleton, cls ).__call__( * args) return cls ._inst[ cls ] class MyClass( object ): __metaclass__ = Singleton |
Tornado中的单例模式运用
来看看tornado.IOLoop中的单例模式:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
class IOLoop( object ): @staticmethod def instance(): """Returns a global `IOLoop` instance. Most applications have a single, global `IOLoop` running on the main thread. Use this method to get this instance from another thread. To get the current thread's `IOLoop`, use `current()`. """ if not hasattr (IOLoop, "_instance" ): with IOLoop._instance_lock: if not hasattr (IOLoop, "_instance" ): # New instance after double check IOLoop._instance = IOLoop() return IOLoop._instance |
为什么这里要double check?来看个这里面简单的单例模式,先来看看代码:
1
2
3
4
5
6
7
|
class Singleton( object ): @staticmathod def instance(): if not hasattr (Singleton, '_instance' ): Singleton._instance = Singleton() return Singleton._instance |
在 Python 里,可以在真正的构造函数__new__里做文章:
1
2
3
4
5
6
|
class Singleton( object ): def __new__( cls , * args, * * kwargs): if not hasattr ( cls , '_instance' ): cls ._instance = super (Singleton, cls ).__new__( cls , * args, * * kwargs) return cls ._instance |
这种情况看似还不错,但是不能保证在多线程的环境下仍然好用,看图:
出现了多线程之后,这明显就是行不通的。
1.上锁使线程同步
上锁后的代码:
1
2
3
4
5
6
7
8
9
10
11
12
|
import threading class Singleton( object ): _instance_lock = threading.Lock() @staticmethod def instance(): with Singleton._instance_lock: if not hasattr (Singleton, '_instance' ): Singleton._instance = Singleton() return Singleton._instance |
这里确实是解决了多线程的情况,但是我们只有实例化的时候需要上锁,其它时候Singleton._instance已经存在了,不需要锁了,但是这时候其它要获得Singleton实例的线程还是必须等待,锁的存在明显降低了效率,有性能损耗。
2.全局变量
在 Java/C++ 这些语言里还可以利用全局变量的方式解决上面那种加锁(同步)带来的问题:
1
2
3
4
5
6
7
8
9
10
11
|
class Singleton { private static Singleton instance = new Singleton(); private Singleton() {} public static Singleton getInstance() { return instance; } } |
在 Python 里就是这样了:
1
2
3
4
5
6
7
8
9
10
|
class Singleton( object ): @staticmethod def instance(): return _g_singleton _g_singleton = Singleton() # def get_instance(): # return _g_singleton |
但是如果这个类所占的资源较多的话,还没有用这个实例就已经存在了,是非常不划算的,Python 代码也略显丑陋……
所以出现了像tornado.IOLoop.instance()那样的double check的单例模式了。在多线程的情况下,既没有同步(加锁)带来的性能下降,也没有全局变量直接实例化带来的资源浪费。
3.装饰器
如果使用装饰器,那么将会是这样:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
import functools def singleton( cls ): ''' Use class as singleton. ''' cls .__new_original__ = cls .__new__ @functools .wraps( cls .__new__) def singleton_new( cls , * args, * * kw): it = cls .__dict__.get( '__it__' ) if it is not None : return it cls .__it__ = it = cls .__new_original__( cls , * args, * * kw) it.__init_original__( * args, * * kw) return it cls .__new__ = singleton_new cls .__init_original__ = cls .__init__ cls .__init__ = object .__init__ return cls # # Sample use: # @singleton class Foo: def __new__( cls ): cls .x = 10 return object .__new__( cls ) def __init__( self ): assert self .x = = 10 self .x = 15 assert Foo().x = = 15 Foo().x = 20 assert Foo().x = = 20 |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
def singleton( cls ): instance = cls () instance.__call__ = lambda : instance return instance # # Sample use # @singleton class Highlander: x = 100 # Of course you can have any attributes or methods you like. Highlander() is Highlander() is Highlander #=> True id (Highlander()) = = id (Highlander) #=> True Highlander().x = = Highlander.x = = 100 #=> True Highlander.x = 50 Highlander().x = = Highlander.x = = 50 #=> True |