Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。要写出 Pythonic(优雅的、地道的、整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,下面列举一些常见的Pythonic写法。
0. 程序必须先让人读懂,然后才能让计算机执行。
“Programs must be written for people to read, and only incidentally for machines to execute.”
1. 交换赋值
1
2
3
4
5
6
7
|
##不推荐 temp = a a = b b = a ##推荐 a, b = b, a # 先生成一个元组(tuple)对象,然后unpack |
2. Unpacking
1
2
3
4
5
6
7
8
9
10
11
|
##不推荐 l = [ 'David' , 'Pythonista' , '+1-514-555-1234' ] first_name = l[ 0 ] last_name = l[ 1 ] phone_number = l[ 2 ] ##推荐 l = [ 'David' , 'Pythonista' , '+1-514-555-1234' ] first_name, last_name, phone_number = l # Python 3 Only first, * middle, last = another_list |
3. 使用操作符in
1
2
3
4
5
6
7
|
##不推荐 if fruit = = "apple" or fruit = = "orange" or fruit = = "berry" : # 多次判断 ##推荐 if fruit in [ "apple" , "orange" , "berry" ]: # 使用 in 更加简洁 |
4. 字符串操作
1
2
3
4
5
6
7
8
9
10
|
##不推荐 colors = [ 'red' , 'blue' , 'green' , 'yellow' ] result = '' for s in colors: result + = s # 每次赋值都丢弃以前的字符串对象, 生成一个新对象 ##推荐 colors = [ 'red' , 'blue' , 'green' , 'yellow' ] result = ''.join(colors) # 没有额外的内存分配 |
5. 字典键值列表
1
2
3
4
5
6
7
8
9
10
|
##不推荐 for key in my_dict.keys(): # my_dict[key] ... ##推荐 for key in my_dict: # my_dict[key] ... # 只有当循环中需要更改key值的情况下,我们需要使用 my_dict.keys() # 生成静态的键值列表。 |
6. 字典键值判断
1
2
3
4
5
6
7
|
##不推荐 if my_dict.has_key(key): # ...do something with d[key] ##推荐 if key in my_dict: # ...do something with d[key] |
7. 字典 get 和 setdefault 方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
##不推荐 navs = {} for (portfolio, equity, position) in data: if portfolio not in navs: navs[portfolio] = 0 navs[portfolio] + = position * prices[equity] ##推荐 navs = {} for (portfolio, equity, position) in data: # 使用 get 方法 navs[portfolio] = navs.get(portfolio, 0 ) + position * prices[equity] # 或者使用 setdefault 方法 navs.setdefault(portfolio, 0 ) navs[portfolio] + = position * prices[equity] |
8. 判断真伪
1
2
3
4
5
6
7
8
9
10
11
12
13
|
##不推荐 if x = = True : # .... if len (items) ! = 0 : # ... if items ! = []: # ... ##推荐 if x: # .... if items: # ... |
9. 遍历列表以及索引
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
##不推荐 items = 'zero one two three' .split() # method 1 i = 0 for item in items: print i, item i + = 1 # method 2 for i in range ( len (items)): print i, items[i] ##推荐 items = 'zero one two three' .split() for i, item in enumerate (items): print i, item |
10. 列表推导
1
2
3
4
5
6
7
8
|
##不推荐 new_list = [] for item in a_list: if condition(item): new_list.append(fn(item)) ##推荐 new_list = [fn(item) for item in a_list if condition(item)] |
11. 列表推导-嵌套
1
2
3
4
5
6
7
8
9
10
11
|
##不推荐 for sub_list in nested_list: if list_condition(sub_list): for item in sub_list: if item_condition(item): # do something... ##推荐 gen = (item for sl in nested_list if list_condition(sl) \ for item in sl if item_condition(item)) for item in gen: # do something... |
12. 循环嵌套
1
2
3
4
5
6
7
8
9
10
|
##不推荐 for x in x_list: for y in y_list: for z in z_list: # do something for x & y ##推荐 from itertools import product for x, y, z in product(x_list, y_list, z_list): # do something for x, y, z |
13. 尽量使用生成器代替列表
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
##不推荐 def my_range(n): i = 0 result = [] while i < n: result.append(fn(i)) i + = 1 return result # 返回列表 ##推荐 def my_range(n): i = 0 result = [] while i < n: yield fn(i) # 使用生成器代替列表 i + = 1 * 尽量用生成器代替列表,除非必须用到列表特有的函数。 |
14. 中间结果尽量使用imap/ifilter代替map/filter
1
2
3
4
5
6
7
|
##不推荐 reduce (rf, filter (ff, map (mf, a_list))) ##推荐 from itertools import ifilter, imap reduce (rf, ifilter(ff, imap(mf, a_list))) * lazy evaluation 会带来更高的内存使用效率,特别是当处理大数据操作的时候。 |
15. 使用any/all函数
1
2
3
4
5
6
7
8
9
10
11
12
|
##不推荐 found = False for item in a_list: if condition(item): found = True break if found: # do something if found... ##推荐 if any (condition(item) for item in a_list): # do something if found... |
16. 属性(property)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
##不推荐 class Clock( object ): def __init__( self ): self .__hour = 1 def setHour( self , hour): if 25 > hour > 0 : self .__hour = hour else : raise BadHourException def getHour( self ): return self .__hour ##推荐 class Clock( object ): def __init__( self ): self .__hour = 1 def __setHour( self , hour): if 25 > hour > 0 : self .__hour = hour else : raise BadHourException def __getHour( self ): return self .__hour hour = property (__getHour, __setHour) |
17. 使用 with 处理文件打开
1
2
3
4
5
6
7
8
9
10
11
12
|
##不推荐 f = open ( "some_file.txt" ) try : data = f.read() # 其他文件操作.. finally : f.close() ##推荐 with open ( "some_file.txt" ) as f: data = f.read() # 其他文件操作... |
18. 使用 with 忽视异常(仅限Python 3)
1
2
3
4
5
6
7
8
9
10
11
|
##不推荐 try : os.remove( "somefile.txt" ) except OSError: pass ##推荐 from contextlib import ignored # Python 3 only with ignored(OSError): os.remove( "somefile.txt" ) |
19. 使用 with 处理加锁
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
##不推荐 import threading lock = threading.Lock() lock.acquire() try : # 互斥操作... finally : lock.release() ##推荐 import threading lock = threading.Lock() with lock: # 互斥操作... |
以上就是python19个值得学习的编程技巧的详细内容,更多关于python 编程技巧的资料请关注服务器之家其它相关文章!
原文链接:https://cloud.tencent.com/developer/article/1361631