故事的开始:.count()
假设你有一个Notification Model类,保存的主要是所有的站内通知:
1
2
3
4
5
6
7
8
9
|
class Notification(models.Model): """一个简化过的Notification类,拥有三个字段: - `user_id`: 消息所有人的用户ID - `has_readed`: 表示消息是否已读 """ user_id = models.IntegerField(db_index = True ) has_readed = models.BooleanField(default = False ) |
理所当然的,刚开始你会通过这样的查询来获取某个用户的未读消息数:
1
2
|
# 获取ID为3074的用户的未读消息数 Notification.objects. filter (user_id = 3074 , has_readed = False ).count() |
当你的Notification表比较小的时候,这样的方式没有任何的问题,但是慢慢的,随着业务量 的扩大。消息表里面有了 上亿条数据 。很多懒惰的用户的未读消息数都到了上千条。
这时候,你就需要实现一个计数器,让这个计数器来统计每个用户的未读消息数,这样 比起之前的 count() ,我们只需要执行一条简单的主键查询(或者更优)就可以拿到实时的未读消息数了。
更优的方案:建立计数器
首先,让我们得建立一个新表来存储每个用户的未读消息数。
1
2
3
4
5
6
7
8
|
class UserNotificationsCount(models.Model): """这个Model保存着每一个用户的未读消息数目""" user_id = models.IntegerField(primary_key = True ) unread_count = models.IntegerField(default = 0 ) def __str__( self ): return '<UserNotificationsCount %s: %s>' % ( self .user_id, self .unread_count) |
我们为每一个注册用户提供了一条对应的 UserNotificationsCount 记录来保存他的未读消息数。 每次获取他的未读消息数的时候,只需要 UserNotificationsCount.objects.get(pk=user_id).unread_count 就可以了。
接下来,问题的重点来了,我们如何知道什么时候应该更新我们的计数器?Django在这方面提供了什么捷径吗?
挑战:实时更新你的计数器
为了让我们的计数器正常的工作,我们必须实时的更新它,这包括:
- 当有新的未读消息过来的时候,为计数器 +1
- 当消息被异常删除时,如果关联的消息为未读,为计数器 -1
- 当阅读完一个新消息的时候,为计数器 -1
让我们一个一个来解决这些情况。
在抛出解决方案之前,我们需要先介绍Django中的一个功能: Signals ,Signals是django提供的一个事件通知机制,它可以让你在监听某些自定义或者 预设的事件,当这些事件发生的时候,调用实现定义好的方法。
比如 django.db.models.signals.pre_save & django.db.models.signals.post_save 表示的是 某个Model调用save方法之前和之后会触发的事件,它和Database提供的触发器在功能上有一点相似。
关于Signals更多的介绍可以参考官方文档,下面让我们来看看Signals能给我们的计数器带来什么好处。
1. 当有新的消息过来的时候,为计数器 +1
这个情况应该是最好处理的,使用Django的Signals,只需要短短几行代码,我们便可以实现这种 情况下的计数器更新:
1
2
3
4
5
6
7
8
9
10
11
12
|
from django.db.models.signals import post_save, post_delete def incr_notifications_counter(sender, instance, created, * * kwargs): # 只有当这个instance是新创建,而且has_readed是默认的false才更新 if not (created and not instance.has_readed): return # 调用 update_unread_count 方法来更新计数器 +1 NotificationController(instance.user_id).update_unread_count( 1 ) # 监听Notification Model的post_save信号 post_save.connect(incr_notifications_counter, sender = Notification) |
这样,每当你使用 Notification.create 或者 .save() 之类的方法创建新通知 时,我们的 NotificationController 便会得到通知,为计数器 +1。
但是请注意,因为我们的计数器是基于Django的signals,如果你的代码里面有地方 在使用原始sql,没有通过Django ORM方法来添加新通知的话,我们的计数器是不会得到 通知的,所以,最好规范所有的新通知建立方式,比如使用同一个API。
2. 当消息被异常删除时,如果关联的消息为未读,为计数器 -1
有了第一个的经验,这种情况处理起来也比较简单,只需要监控Notification的post_delete 信号就可以了,下面是一段实例代码:
1
2
3
4
5
6
|
def decr_notifications_counter(sender, instance, * * kwargs): # 当删除的消息还没有被读过时,计数器 -1 if not instance.has_readed: NotificationController(instance.user_id).update_unread_count( - 1 ) post_delete.connect(decr_notifications_counter, sender = Notification) |
至此,Notification的删除事件也能正常的更新我们的计数器了。
3. 当阅读一个新消息的时候,为计数器 -1
接下来,当用户阅读某条未读消息的时候,我们也需要更新我们的未读消息计数器。 你可能会说,这有什么难的?我只要在我的阅读消息的方法里面,手动更新我的计数器不就好了?
比如这样:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
class NotificationController( object ): ... ... def mark_as_readed( self , notification_id): notification = Notification.objects.get(pk = notification_id) # 没有必要重复标记一个已经读过的通知 if notication.has_readed: return notification.has_readed = True notification.save() # 在这里更新我们的计数器,嗯,我感觉好极了 self .update_unread_count( - 1 ) |
通过一些简单的测试,你可以会觉得你的计数器工作的非常好,但是,这样的实现方式有一个 非常致命的问题, 这个方式没有办法正常处理并发的请求 。
打一个比方,你拥有一个id为100的未读消息对象,这个时候同时有了两个请求过来,都要标记这个通知为已读:
1
2
3
|
# 因为两个并发的请求,假设这两个方法几乎同时被调用 NotificationController(user_id).mark_as_readed( 100 ) NotificationController(user_id).mark_as_readed( 100 ) |
显而易见的,这两次方法都会成功的标记这条通知为已读,因为在并发的情况下, if notification.has_readed 这样的检查无法正常工作,所以我们的计数器将会被错误的 -1 两次 ,但其实我们只读了一条请求。
那么,这样的问题应该怎么解决呢?
基本上,解决并发请求产生的数据冲突只有一个办法: 加锁 ,介绍两种比较简单的解决方案:
使用 select for update 数据库查询
select ... for update 是数据库层面上专门用来解决并发取数据后再修改的场景的,主流的关系数据库 比如mysql、postgresql都支持这个功能, 新版的Django ORM甚至直接提供了这个功能的shortcut 。 关于它的更多介绍,你可以搜索你使用的数据库的介绍文档。
使用 select for update 后,我们的代码可能会变成这样:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
from django.db import transaction class NotificationController( object ): ... ... def mark_as_readed( self , notification_id): # 手动让select for update和update语句发生在一个完整的事务里面 with transaction.commit_on_success(): # 使用select_for_update来保证并发请求同时只有一个请求在处理,其他的请求 # 等待锁释放 notification = Notification.objects.select_for_update().get(pk = notification_id) # 没有必要重复标记一个已经读过的通知 if notication.has_readed: return notification.has_readed = True notification.save() # 在这里更新我们的计数器,嗯,我感觉好极了 self .update_unread_count( - 1 ) |
除了使用``select for update``这样的功能,还有一个比较简单的办法来解决这个问题。
使用update来实现原子性修改
其实,更简单的办法,只要把我们的数据库改成单条的update就可以解决并发情况下的问题了:
1
2
3
4
5
|
def mark_as_readed( self , notification_id): affected_rows = Notification.objects. filter (pk = notification_id, has_readed = False )\ .update(has_readed = True ) # affected_rows将会返回update语句修改的条目数 self .update_unread_count(affected_rows) |
这样,并发的标记已读操作也可以正确的影响到我们的计数器了。
高性能?
我们在之前介绍了如何实现一个能够正确更新的未读消息计数器,我们可能会直接使用UPDATE 语句来修改我们的计数器,就像这样:
1
2
3
4
5
6
|
from django.db.models import F def update_unread_count( self , count) # 使用Update语句来更新我们的计数器 UserNotificationsCount.objects. filter (pk = self .user_id)\ .update(unread_count = F( 'unread_count' ) + count) |
但是在生产环境中,这样的处理方式很有可能造成严重的性能问题,因为如果我们的计数器在频繁 更新的话,海量的Update会给数据库造成不小的压力。所以为了实现一个高性能的计数器,我们 需要把改动暂存起来,然后批量写入到数据库。
使用 redis 的 sorted set ,我们可以非常轻松的做到这一点。
使用sorted set来缓存计数器改动
redis是一个非常好用的内存数据库,其中的sorted set是它提供的一种数据类型:有序集合, 使用它,我们可以非常简单的缓存所有的计数器改动,然后批量回写到数据库。
1
2
3
4
5
6
7
8
|
RK_NOTIFICATIONS_COUNTER = 'ss_pending_counter_changes' def update_unread_count( self , count): """修改过的update_unread_count方法""" redisdb.zincrby(RK_NOTIFICATIONS_COUNTER, str ( self .user_id), count) # 同时我们也需要修改获取用户未读消息数方法,使其获取redis中那些没有被回写 # 到数据库的缓冲区数据。在这里代码就省略了 |
通过以上的代码,我们把计数器的更新缓冲在了redis里面,我们还需要一个脚本来把这个缓冲区 里面的数据定时回写到数据库中。
通过自定义django的command,我们可以非常轻松的做到这一点:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
# File: management/commands/notification_update_counter.py # -*- coding: utf-8 -*- from django.core.management.base import BaseCommand from django.db.models import F # Fix import prob from notification.models import UserNotificationsCount from notification.utils import RK_NOTIFICATIONS_COUNTER from base_redis import redisdb import logging logger = logging.getLogger( 'stdout' ) class Command(BaseCommand): help = 'Update UserNotificationsCounter objects, Write changes from redis to database' def handle( self , * args, * * options): # 首先,通过 zrange 命令来获取缓冲区所有修改过的用户ID for user_id in redisdb.zrange(RK_NOTIFICATIONS_COUNTER, 0 , - 1 ): # 这里值得注意,为了保证操作的原子性,我们使用了redisdb的pipeline pipe = redisdb.pipeline() pipe.zscore(RK_NOTIFICATIONS_COUNTER, user_id) pipe.zrem(RK_NOTIFICATIONS_COUNTER, user_id) count, _ = pipe.execute() count = int (count) if not count: continue logger.info( 'Updating unread count user %s: count %s' % (user_id, count)) UserNotificationsCount.objects. filter (pk = obj.pk)\ .update(unread_count = F( 'unread_count' ) + count) |
之后,通过 python manage.py notification_update_counter 这样的命令就可以把缓冲区 里面的改动批量回写到数据库了。我们还可以把这个命令配置到crontab中来定义执行。
总结
文章到了这里,一个简单的“高性能”未读消息计数器算是实现完了。说了这么多,其实主要的知识点就是这么些:
使用Django的signals来获取Model的新建/删除操作更新
使用数据库的select for update来正确处理并发的数据库操作
使用redis的sorted set来缓存计数器的修改操作
希望能对您有所帮助。 :)