最近学习python并发,于是对多进程、多线程、异步和协程做了个总结。
一、多线程
多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行。即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果。
多线程相当于一个并发(concunrrency)系统。并发系统一般同时执行多个任务。如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完,另一个指令,多个窗口同时卖票,可能出现卖出不存在的票。
在并发情况下,指令执行的先后顺序由内核决定。同一个线程内部,指令按照先后顺序执行,但不同线程之间的指令很难说清除哪一个会先执行。因此要考虑多线程同步的问题。同步(synchronization)是指在一定的时间内只允许某一个线程访问某个资源。
1、thread模块
2、threading模块
threading.Thread 创建一个线程。
给判断是否有余票和卖票,加上互斥锁,这样就不会造成一个线程刚判断没有余票,而另外一个线程就执行卖票操作。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
#! /usr/bin/python #-* coding: utf-8 -* # __author__ ="tyomcat" import threading import time import os def booth(tid): global i global lock while True : lock.acquire() if i! = 0 : i = i - 1 print "窗口:" ,tid, ",剩余票数:" ,i time.sleep( 1 ) else : print "Thread_id" ,tid, "No more tickets" os._exit( 0 ) lock.release() time.sleep( 1 ) i = 100 lock = threading.Lock() for k in range ( 10 ): new_thread = threading.Thread(target = booth,args = (k,)) new_thread.start() |
二、协程(又称微线程,纤程)
协程,与线程的抢占式调度不同,它是协作式调度。协程也是单线程,但是它能让原来要使用异步+回调方式写的非人类代码,可以用看似同步的方式写出来。
1、协程在python中可以由生成器(generator)来实现。
首先要对生成器和yield有一个扎实的理解.
调用一个普通的python函数,一般是从函数的第一行代码开始执行,结束于return语句、异常或者函数执行(也可以认为是隐式地返回了None)。
一旦函数将控制权交还给调用者,就意味着全部结束。而有时可以创建能产生一个序列的函数,来“保存自己的工作”,这就是生成器(使用了yield关键字的函数)。
能够“产生一个序列”是因为函数并没有像通常意义那样返回。return隐含的意思是函数正将执行代码的控制权返回给函数被调用的地方。而"yield"的隐含意思是控制权的转移是临时和自愿的,我们的函数将来还会收回控制权。
看一下生产者/消费者的例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
#! /usr/bin/python #-* coding: utf-8 -* # __author__ ="tyomcat" import time import sys # 生产者 def produce(l): i = 0 while 1 : if i < 10 : l.append(i) yield i i = i + 1 time.sleep( 1 ) else : return # 消费者 def consume(l): p = produce(l) while 1 : try : p. next () while len (l) > 0 : print l.pop() except StopIteration: sys.exit( 0 ) if __name__ = = "__main__" : l = [] consume(l) |
当程序执行到produce的yield i时,返回了一个generator并暂停执行,当我们在custom中调用p.next(),程序又返回到produce的yield i 继续执行,这样 l 中又append了元素,然后我们print l.pop(),直到p.next()引发了StopIteration异常。
2、Stackless Python
3、greenlet模块
基于greenlet的实现则性能仅次于Stackless Python,大致比Stackless Python慢一倍,比其他方案快接近一个数量级。其实greenlet不是一种真正的并发机制,而是在同一线程内,在不同函数的执行代码块之间切换,实施“你运行一会、我运行一会”,并且在进行切换时必须指定何时切换以及切换到哪。
4、eventlet模块
三、多进程
1、子进程(subprocess包)
在python中,通过subprocess包,fork一个子进程,并运行外部程序。
调用系统的命令的时候,最先考虑的os模块。用os.system()和os.popen()来进行操作。但是这两个命令过于简单,不能完成一些复杂的操作,如给运行的命令提供输入或者读取命令的输出,判断该命令的运行状态,管理多个命令的并行等等。这时subprocess中的Popen命令就能有效的完成我们需要的操作
1
2
3
4
5
|
>>> import subprocess >>>command_line = raw_input () ping - c 10 www.baidu.com >>>args = shlex.split(command_line) >>>p = subprocess.Popen(args) |
利用subprocess.PIPE将多个子进程的输入和输出连接在一起,构成管道(pipe):
1
2
3
4
5
|
import subprocess child1 = subprocess.Popen([ "ls" , "-l" ], stdout = subprocess.PIPE) child2 = subprocess.Popen([ "wc" ], stdin = child1.stdout,stdout = subprocess.PIPE) out = child2.communicate() print (out) |
communicate() 方法从stdout和stderr中读出数据,并输入到stdin中。
2、多进程(multiprocessing包)
(1)、multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。
进程池 (Process Pool)可以创建多个进程。
apply_async(func,args) 从进程池中取出一个进程执行func,args为func的参数。它将返回一个AsyncResult的对象,你可以对该对象调用get()方法以获得结果。
close() 进程池不再创建新的进程
join() wait进程池中的全部进程。必须对Pool先调用close()方法才能join。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
#! /usr/bin/env python # -*- coding:utf-8 -*- # __author__ == "tyomcat" # "我的电脑有4个cpu" from multiprocessing import Pool import os, time def long_time_task(name): print 'Run task %s (%s)...' % (name, os.getpid()) start = time.time() time.sleep( 3 ) end = time.time() print 'Task %s runs %0.2f seconds.' % (name, (end - start)) if __name__ = = '__main__' : print 'Parent process %s.' % os.getpid() p = Pool() for i in range ( 4 ): p.apply_async(long_time_task, args = (i,)) print 'Waiting for all subprocesses done...' p.close() p.join() print 'All subprocesses done.' |
(2)、多进程共享资源
通过共享内存和Manager对象:用一个进程作为服务器,建立Manager来真正存放资源。
其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
#! /usr/bin/env python # -*- coding:utf-8 -*- # __author__ == "tyomcat" from multiprocessing import Queue,Pool import multiprocessing,time,random def write(q): for value in [ 'A' , 'B' , 'C' , 'D' ]: print "Put %s to Queue!" % value q.put(value) time.sleep(random.random()) def read(q,lock): while True : lock.acquire() if not q.empty(): value = q.get( True ) print "Get %s from Queue" % value time.sleep(random.random()) else : break lock.release() if __name__ = = "__main__" : manager = multiprocessing.Manager() q = manager.Queue() p = Pool() lock = manager.Lock() pw = p.apply_async(write,args = (q,)) pr = p.apply_async(read,args = (q,lock)) p.close() p.join() print print "所有数据都写入并且读完" |
四、异步
无论是线程还是进程,使用的都是同步进制,当发生阻塞时,性能会大幅度降低,无法充分利用CPU潜力,浪费硬件投资,更重要造成软件模块的铁板化,紧耦合,无法切割,不利于日后扩展和变化。
不管是进程还是线程,每次阻塞、切换都需要陷入系统调用(system call),先让CPU跑操作系统的调度程序,然后再由调度程序决定该跑哪一个进程(线程)。多个线程之间在一些访问互斥的代码时还需要加上锁,
现下流行的异步server都是基于事件驱动的(如nginx)。
异步事件驱动模型中,把会导致阻塞的操作转化为一个异步操作,主线程负责发起这个异步操作,并处理这个异步操作的结果。由于所有阻塞的操作都转化为异步操作,理论上主线程的大部分时间都是在处理实际的计算任务,少了多线程的调度时间,所以这种模型的性能通常会比较好。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。