ABSIndividual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
import numpy as np import ObjFunction class ABSIndividual: ''' individual of artificial bee swarm algorithm ''' def __init__( self , vardim, bound): ''' vardim: dimension of variables bound: boundaries of variables ''' self .vardim = vardim self .bound = bound self .fitness = 0. self .trials = 0 def generate( self ): ''' generate a random chromsome for artificial bee swarm algorithm ''' len = self .vardim rnd = np.random.random(size = len ) self .chrom = np.zeros( len ) for i in xrange ( 0 , len ): self .chrom[i] = self .bound[ 0 , i] + \ ( self .bound[ 1 , i] - self .bound[ 0 , i]) * rnd[i] def calculateFitness( self ): ''' calculate the fitness of the chromsome ''' self .fitness = ObjFunction.GrieFunc( self .vardim, self .chrom, self .bound) |
ABS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
import numpy as np from ABSIndividual import ABSIndividual import random import copy import matplotlib.pyplot as plt class ArtificialBeeSwarm: ''' the class for artificial bee swarm algorithm ''' def __init__( self , sizepop, vardim, bound, MAXGEN, params): ''' sizepop: population sizepop vardim: dimension of variables bound: boundaries of variables MAXGEN: termination condition params: algorithm required parameters, it is a list which is consisting of[trailLimit, C] ''' self .sizepop = sizepop self .vardim = vardim self .bound = bound self .foodSource = self .sizepop / 2 self .MAXGEN = MAXGEN self .params = params self .population = [] self .fitness = np.zeros(( self .sizepop, 1 )) self .trace = np.zeros(( self .MAXGEN, 2 )) def initialize( self ): ''' initialize the population of abs ''' for i in xrange ( 0 , self .foodSource): ind = ABSIndividual( self .vardim, self .bound) ind.generate() self .population.append(ind) def evaluation( self ): ''' evaluation the fitness of the population ''' for i in xrange ( 0 , self .foodSource): self .population[i].calculateFitness() self .fitness[i] = self .population[i].fitness def employedBeePhase( self ): ''' employed bee phase ''' for i in xrange ( 0 , self .foodSource): k = np.random.random_integers( 0 , self .vardim - 1 ) j = np.random.random_integers( 0 , self .foodSource - 1 ) while j = = i: j = np.random.random_integers( 0 , self .foodSource - 1 ) vi = copy.deepcopy( self .population[i]) # vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * ( # vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom) # for k in xrange(0, self.vardim): # if vi.chrom[k] < self.bound[0, k]: # vi.chrom[k] = self.bound[0, k] # if vi.chrom[k] > self.bound[1, k]: # vi.chrom[k] = self.bound[1, k] vi.chrom[ k] + = np.random.uniform(low = - 1 , high = 1.0 , size = 1 ) * (vi.chrom[k] - self .population[j].chrom[k]) if vi.chrom[k] < self .bound[ 0 , k]: vi.chrom[k] = self .bound[ 0 , k] if vi.chrom[k] > self .bound[ 1 , k]: vi.chrom[k] = self .bound[ 1 , k] vi.calculateFitness() if vi.fitness > self .fitness[fi]: self .population[fi] = vi self .fitness[fi] = vi.fitness if vi.fitness > self .best.fitness: self .best = vi vi.calculateFitness() if vi.fitness > self .fitness[i]: self .population[i] = vi self .fitness[i] = vi.fitness if vi.fitness > self .best.fitness: self .best = vi else : self .population[i].trials + = 1 def onlookerBeePhase( self ): ''' onlooker bee phase ''' accuFitness = np.zeros(( self .foodSource, 1 )) maxFitness = np. max ( self .fitness) for i in xrange ( 0 , self .foodSource): accuFitness[i] = 0.9 * self .fitness[i] / maxFitness + 0.1 for i in xrange ( 0 , self .foodSource): for fi in xrange ( 0 , self .foodSource): r = random.random() if r < accuFitness[i]: k = np.random.random_integers( 0 , self .vardim - 1 ) j = np.random.random_integers( 0 , self .foodSource - 1 ) while j = = fi: j = np.random.random_integers( 0 , self .foodSource - 1 ) vi = copy.deepcopy( self .population[fi]) # vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * ( # vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom) # for k in xrange(0, self.vardim): # if vi.chrom[k] < self.bound[0, k]: # vi.chrom[k] = self.bound[0, k] # if vi.chrom[k] > self.bound[1, k]: # vi.chrom[k] = self.bound[1, k] vi.chrom[ k] + = np.random.uniform(low = - 1 , high = 1.0 , size = 1 ) * (vi.chrom[k] - self .population[j].chrom[k]) if vi.chrom[k] < self .bound[ 0 , k]: vi.chrom[k] = self .bound[ 0 , k] if vi.chrom[k] > self .bound[ 1 , k]: vi.chrom[k] = self .bound[ 1 , k] vi.calculateFitness() if vi.fitness > self .fitness[fi]: self .population[fi] = vi self .fitness[fi] = vi.fitness if vi.fitness > self .best.fitness: self .best = vi else : self .population[fi].trials + = 1 break def scoutBeePhase( self ): ''' scout bee phase ''' for i in xrange ( 0 , self .foodSource): if self .population[i].trials > self .params[ 0 ]: self .population[i].generate() self .population[i].trials = 0 self .population[i].calculateFitness() self .fitness[i] = self .population[i].fitness def solve( self ): ''' the evolution process of the abs algorithm ''' self .t = 0 self .initialize() self .evaluation() best = np. max ( self .fitness) bestIndex = np.argmax( self .fitness) self .best = copy.deepcopy( self .population[bestIndex]) self .avefitness = np.mean( self .fitness) self .trace[ self .t, 0 ] = ( 1 - self .best.fitness) / self .best.fitness self .trace[ self .t, 1 ] = ( 1 - self .avefitness) / self .avefitness print ( "Generation %d: optimal function value is: %f; average function value is %f" % ( self .t, self .trace[ self .t, 0 ], self .trace[ self .t, 1 ])) while self .t < self .MAXGEN - 1 : self .t + = 1 self .employedBeePhase() self .onlookerBeePhase() self .scoutBeePhase() best = np. max ( self .fitness) bestIndex = np.argmax( self .fitness) if best > self .best.fitness: self .best = copy.deepcopy( self .population[bestIndex]) self .avefitness = np.mean( self .fitness) self .trace[ self .t, 0 ] = ( 1 - self .best.fitness) / self .best.fitness self .trace[ self .t, 1 ] = ( 1 - self .avefitness) / self .avefitness print ( "Generation %d: optimal function value is: %f; average function value is %f" % ( self .t, self .trace[ self .t, 0 ], self .trace[ self .t, 1 ])) print ( "Optimal function value is: %f; " % self .trace[ self .t, 0 ]) print "Optimal solution is:" print self .best.chrom self .printResult() def printResult( self ): ''' plot the result of abs algorithm ''' x = np.arange( 0 , self .MAXGEN) y1 = self .trace[:, 0 ] y2 = self .trace[:, 1 ] plt.plot(x, y1, 'r' , label = 'optimal value' ) plt.plot(x, y2, 'g' , label = 'average value' ) plt.xlabel( "Iteration" ) plt.ylabel( "function value" ) plt.title( "Artificial Bee Swarm algorithm for function optimization" ) plt.legend() plt.show() |
运行程序:
1
2
3
4
5
|
if __name__ = = "__main__" : bound = np.tile([[ - 600 ], [ 600 ]], 25 ) abs = ABS ( 60 , 25 , bound, 1000 , [ 100 , 0.5 ]) abs .solve() |
ObjFunction见简单遗传算法-python实现。
以上就是python实现人工蜂群算法的详细内容,更多关于python 人工蜂群算法的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/biaoyu/p/4857904.html