脉冲星假信号频率的相对路径论证。
首先看一下演示结果:
实例代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation # Fixing random state for reproducibility np.random.seed( 19680801 ) # Create new Figure with black background fig = plt.figure(figsize = ( 8 , 8 ), facecolor = 'black' ) # Add a subplot with no frame ax = plt.subplot( 111 , frameon = False ) # Generate random data data = np.random.uniform( 0 , 1 , ( 64 , 75 )) X = np.linspace( - 1 , 1 , data.shape[ - 1 ]) G = 1.5 * np.exp( - 4 * X * * 2 ) # Generate line plots lines = [] for i in range ( len (data)): # Small reduction of the X extents to get a cheap perspective effect xscale = 1 - i / 200. # Same for linewidth (thicker strokes on bottom) lw = 1.5 - i / 100.0 line, = ax.plot(xscale * X, i + G * data[i], color = "w" , lw = lw) lines.append(line) # Set y limit (or first line is cropped because of thickness) ax.set_ylim( - 1 , 70 ) # No ticks ax.set_xticks([]) ax.set_yticks([]) # 2 part titles to get different font weights ax.text( 0.5 , 1.0 , "MATPLOTLIB " , transform = ax.transAxes, ha = "right" , va = "bottom" , color = "w" , family = "sans-serif" , fontweight = "light" , fontsize = 16 ) ax.text( 0.5 , 1.0 , "UNCHAINED" , transform = ax.transAxes, ha = "left" , va = "bottom" , color = "w" , family = "sans-serif" , fontweight = "bold" , fontsize = 16 ) def update( * args): # Shift all data to the right data[:, 1 :] = data[:, : - 1 ] # Fill-in new values data[:, 0 ] = np.random.uniform( 0 , 1 , len (data)) # Update data for i in range ( len (data)): lines[i].set_ydata(i + G * data[i]) # Return modified artists return lines # Construct the animation, using the update function as the animation # director. anim = animation.FuncAnimation(fig, update, interval = 10 ) plt.show() |
脚本运行时间:(0分0.065秒)
总结
以上就是本文关于Python模拟脉冲星伪信号频率实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
原文链接:https://matplotlib.org/index.html