本笔记目的是通过tensorflow实现一个两层的神经网络。目的是实现一个二次函数的拟合。
如何添加一层网络
代码如下:
1
2
3
4
5
6
7
8
9
10
|
def add_layer(inputs, in_size, out_size, activation_function = None ): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([ 1 , out_size]) + 0.1 ) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None : outputs = Wx_plus_b else : outputs = activation_function(Wx_plus_b) return outputs |
注意该函数中是xW+b,而不是Wx+b。所以要注意乘法的顺序。x应该定义为[类别数量, 数据数量], W定义为[数据类别,类别数量]。
创建一些数据
1
2
3
4
|
# Make up some real data x_data = np.linspace( - 1 , 1 , 300 )[:, np.newaxis] noise = np.random.normal( 0 , 0.05 , x_data.shape) y_data = np.square(x_data) - 0.5 + noise |
numpy的linspace函数能够产生等差数列。start,stop决定等差数列的起止值。endpoint参数指定包不包括终点值。
1
2
3
|
numpy.linspace(start, stop, num = 50 , endpoint = True , retstep = False , dtype = None )[source] Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [start, stop]. |
noise函数为添加噪声所用,这样二次函数的点不会与二次函数曲线完全重合。
numpy的newaxis可以新增一个维度而不需要重新创建相应的shape在赋值,非常方便,如上面的例子中就将x_data从一维变成了二维。
添加占位符,用作输入
1
2
3
|
# define placeholder for inputs to network xs = tf.placeholder(tf.float32, [ None , 1 ]) ys = tf.placeholder(tf.float32, [ None , 1 ]) |
添加隐藏层和输出层
1
2
3
4
|
# add hidden layer l1 = add_layer(xs, 1 , 10 , activation_function = tf.nn.relu) # add output layer prediction = add_layer(l1, 10 , 1 , activation_function = None ) |
计算误差,并用梯度下降使得误差最小
1
2
3
|
# the error between prediciton and real data loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices = [ 1 ])) train_step = tf.train.GradientDescentOptimizer( 0.1 ).minimize(loss) |
完整代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
from __future__ import print_function import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None ): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([ 1 , out_size]) + 0.1 ) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None : outputs = Wx_plus_b else : outputs = activation_function(Wx_plus_b) return outputs # Make up some real data x_data = np.linspace( - 1 , 1 , 300 )[:, np.newaxis] noise = np.random.normal( 0 , 0.05 , x_data.shape) y_data = np.square(x_data) - 0.5 + noise # define placeholder for inputs to network xs = tf.placeholder(tf.float32, [ None , 1 ]) ys = tf.placeholder(tf.float32, [ None , 1 ]) # add hidden layer l1 = add_layer(xs, 1 , 10 , activation_function = tf.nn.relu) # add output layer prediction = add_layer(l1, 10 , 1 , activation_function = None ) # the error between prediciton and real data loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices = [ 1 ])) train_step = tf.train.GradientDescentOptimizer( 0.1 ).minimize(loss) # important step init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) # plot the real data fig = plt.figure() ax = fig.add_subplot( 1 , 1 , 1 ) ax.scatter(x_data, y_data) plt.ion() plt.show() for i in range ( 1000 ): # training sess.run(train_step, feed_dict = {xs: x_data, ys: y_data}) if i % 50 = = 0 : # to visualize the result and improvement try : ax.lines.remove(lines[ 0 ]) except Exception: pass prediction_value = sess.run(prediction, feed_dict = {xs: x_data}) # plot the prediction lines = ax.plot(x_data, prediction_value, 'r-' , lw = 5 ) plt.pause( 0.1 ) |
运行结果:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/qq_30159351/article/details/52639291