numpy是无法直接判断出由数值与字符混合组成的数组中的数值型数据的,因为由数值类型和字符类型组成的numpy数组已经不是数值类型的数组了,而是dtype='<U11'。
1、math.isnan也不行,它只能判断float("nan"):
1
2
3
4
5
6
7
8
9
10
|
>>> import math >>> math.isnan( 1 ) False >>> math.isnan( 'a' ) Traceback (most recent call last): File "<stdin>" , line 1 , in <module> TypeError: a float is required >>> math.isnan( float ( "nan" )) True >>> |
2、np.isnan不可用,因为np.isnan只能用于数值型与np.nan组成的numpy数组:
1
2
3
4
5
6
7
8
9
10
11
12
|
>>> import numpy as np >>> test1 = np.array([ 1 , 2 , 'aa' , 3 ]) >>> np.isnan(test1) Traceback (most recent call last): File "<stdin>" , line 1 , in <module> TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''sa fe'' >>> test2 = np.array([ 1 , 2 ,np.nan, 3 ]) >>> np.isnan(test2) array([ False , False , True , False ], dtype = bool ) >>> |
解决办法:
方法1:将numpy数组转换为python的list,然后通过filter过滤出数值型的值,再转为numpy, 但是,有一个严重的问题,无法保证原来的索引
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
>>> import numpy as np >>> test1 = np.array([ 1 , 2 , 'aa' , 3 ]) >>> list1 = list (test1) >>> def filter_fun(x): ... try : ... return isinstance ( float (x),( float )) ... except : ... return False ... >>> list ( filter (filter_fun,list1)) [ '1' , '2' , '3' ] >>> np.array( filter (filter_fun,list1)) array(< filter object at 0x0339CA30 >, dtype = object ) >>> np.array( list ( filter (filter_fun,list1))) array([ '1' , '2' , '3' ], dtype = '<U1' ) >>> np.array([ float (x) for x in filter (filter_fun,list1)]) array([ 1. , 2. , 3. ]) >>> |
方法2:利用map制作bool数组,然后再过滤数据和索引:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
>>> import numpy as np >>> test1 = np.array([ 1 , 2 , 'aa' , 3 ]) >>> list1 = list (test1) >>> def filter_fun(x): ... try : ... return isinstance ( float (x),( float )) ... except : ... return False ... >>> import pandas as pd >>> test = pd.DataFrame(test1,index = [ 1 , 2 , 3 , 4 ]) >>> test 0 1 1 2 2 3 aa 4 3 >>> index = test.index >>> index Int64Index([ 1 , 2 , 3 , 4 ], dtype = 'int64' ) >>> bool_index = map (filter_fun,list1) >>> bool_index = list (bool_index) #bool_index这样的迭代结果只能list一次,一次再list时会是空,所以保存一下list的结果 >>> bool_index [ True , True , False , True ] >>> new_data = test1[np.array(bool_index)] >>> new_data array([ '1' , '2' , '3' ], dtype = '<U11' ) >>> new_index = index[np.array(bool_index)] >>> new_index Int64Index([ 1 , 2 , 4 ], dtype = 'int64' ) >>> test2 = pd.DataFrame(new_data,index = new_index) >>> test2 0 1 1 2 2 4 3 >>> |
以上这篇numpy判断数值类型、过滤出数值型数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/o1101574955/article/details/51698922