一、对于二值图,0代表黑色,255代表白色。去除小连通区域与孔洞,小连通区域用8邻域,孔洞用4邻域。
函数名字为:void RemoveSmallRegion(Mat &Src, Mat &Dst,int AreaLimit, int CheckMode, int NeihborMode)
CheckMode: 0代表去除黑区域,1代表去除白区域; NeihborMode:0代表4邻域,1代表8邻域;
如果去除小连通区域CheckMode=1,NeihborMode=1去除孔洞CheckMode=0,NeihborMode=0
记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查 。
1.先对整个图像扫描,如果是去除小连通区域,则将黑色的背景图作为合格,像素值标记为3,如果是去除孔洞,则将白色的色素点作为合格,像素值标记为3。
2.扫面整个图像,对图像进行处理。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
void RemoveSmallRegion(Mat &Src, Mat &Dst, int AreaLimit, int CheckMode, int NeihborMode) { int RemoveCount = 0 ; / / 新建一幅标签图像初始化为 0 像素点,为了记录每个像素点检验状态的标签, 0 代表未检查, 1 代表正在检查, 2 代表检查不合格(需要反转颜色), 3 代表检查合格或不需检查 / / 初始化的图像全部为 0 ,未检查 Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1); if (CheckMode = = 1 ) / / 去除小连通区域的白色点 { cout << "去除小连通域." ; for ( int i = 0 ; i < Src.rows; i + + ) { for ( int j = 0 ; j < Src.cols; j + + ) { if (Src.at<uchar>(i, j) < 10 ) { PointLabel.at<uchar>(i, j) = 3 ; / / 将背景黑色点标记为合格,像素为 3 } } } } else / / 去除孔洞,黑色点像素 { cout << "去除孔洞" ; for ( int i = 0 ; i < Src.rows; i + + ) { for ( int j = 0 ; j < Src.cols; j + + ) { if (Src.at<uchar>(i, j) > 10 ) { PointLabel.at<uchar>(i, j) = 3 ; / / 如果原图是白色区域,标记为合格,像素为 3 } } } } vector<Point2i>NeihborPos; / / 将邻域压进容器 NeihborPos.push_back(Point2i( - 1 , 0 )); NeihborPos.push_back(Point2i( 1 , 0 )); NeihborPos.push_back(Point2i( 0 , - 1 )); NeihborPos.push_back(Point2i( 0 , 1 )); if (NeihborMode = = 1 ) { cout << "Neighbor mode: 8邻域." << endl; NeihborPos.push_back(Point2i( - 1 , - 1 )); NeihborPos.push_back(Point2i( - 1 , 1 )); NeihborPos.push_back(Point2i( 1 , - 1 )); NeihborPos.push_back(Point2i( 1 , 1 )); } else cout << "Neighbor mode: 4邻域." << endl; int NeihborCount = 4 + 4 * NeihborMode; int CurrX = 0 , CurrY = 0 ; / / 开始检测 for ( int i = 0 ; i < Src.rows; i + + ) { for ( int j = 0 ; j < Src.cols; j + + ) { if (PointLabel.at<uchar>(i, j) = = 0 ) / / 标签图像像素点为 0 ,表示还未检查的不合格点 { / / 开始检查 vector<Point2i>GrowBuffer; / / 记录检查像素点的个数 GrowBuffer.push_back(Point2i(j, i)); PointLabel.at<uchar>(i, j) = 1 ; / / 标记为正在检查 int CheckResult = 0 ; for ( int z = 0 ; z < GrowBuffer.size(); z + + ) { for ( int q = 0 ; q < NeihborCount; q + + ) { CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x; CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y; if (CurrX > = 0 && CurrX<Src.cols&&CurrY > = 0 && CurrY<Src.rows) / / 防止越界 { if (PointLabel.at<uchar>(CurrY, CurrX) = = 0 ) { GrowBuffer.push_back(Point2i(CurrX, CurrY)); / / 邻域点加入 buffer PointLabel.at<uchar>(CurrY, CurrX) = 1 ; / / 更新邻域点的检查标签,避免重复检查 } } } } if (GrowBuffer.size()>AreaLimit) / / 判断结果(是否超出限定的大小), 1 为未超出, 2 为超出 CheckResult = 2 ; else { CheckResult = 1 ; RemoveCount + + ; / / 记录有多少区域被去除 } for ( int z = 0 ; z < GrowBuffer.size(); z + + ) { CurrX = GrowBuffer.at(z).x; CurrY = GrowBuffer.at(z).y; PointLabel.at<uchar>(CurrY,CurrX) + = CheckResult; / / 标记不合格的像素点,像素值为 2 } / / * * * * * * * * 结束该点处的检查 * * * * * * * * * * } } } CheckMode = 255 * ( 1 - CheckMode); / / 开始反转面积过小的区域 for ( int i = 0 ; i < Src.rows; + + i) { for ( int j = 0 ; j < Src.cols; + + j) { if (PointLabel.at<uchar>(i,j) = = 2 ) { Dst.at<uchar>(i, j) = CheckMode; } else if (PointLabel.at<uchar>(i, j) = = 3 ) { Dst.at<uchar>(i, j) = Src.at<uchar>(i, j); } } } cout << RemoveCount << " objects removed." << endl; } |
调用函数:dst是原来的二值图。
1
2
3
4
|
Mat erzhi1 = Mat::zeros(srcImage.rows, srcImage.cols, CV_8UC1); RemoveSmallRegion(dst, erzhi, 100 , 1 , 1 ); RemoveSmallRegion(erzhi, erzhi, 100 , 0 , 0 ); imshow( "erzhi1" , erzhi); |
和之前的图像相比
以上这篇OPENCV去除小连通区域,去除孔洞的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/dajiyi1998/article/details/60601410